|
import gradio as gr
|
|
import os
|
|
from dotenv import load_dotenv
|
|
import base64
|
|
from io import BytesIO
|
|
from mistralai import Mistral
|
|
from pydantic import BaseModel, Field
|
|
from datasets import load_dataset
|
|
from PIL import Image
|
|
import json
|
|
import sqlite3
|
|
from datetime import datetime
|
|
|
|
|
|
ds = load_dataset("svjack/pokemon-blip-captions-en-zh")
|
|
ds = ds["train"]
|
|
|
|
|
|
api_key = os.environ.get('MISTRAL_API_KEY')
|
|
|
|
if not api_key:
|
|
raise ValueError("MISTRAL_API_KEY is not set in the environment variables.")
|
|
|
|
|
|
hist = [str({"en": ds[i]["en_text"], "zh": ds[i]["zh_text"]}) for i in range(8)]
|
|
hist_str = "\n".join(hist)
|
|
|
|
|
|
class Caption(BaseModel):
|
|
en: str = Field(...,
|
|
description="English caption of image",
|
|
max_length=84)
|
|
zh: str = Field(...,
|
|
description="Chinese caption of image",
|
|
max_length=64)
|
|
|
|
|
|
client = Mistral(api_key=api_key)
|
|
|
|
def generate_caption(image):
|
|
|
|
buffered = BytesIO()
|
|
image.save(buffered, format="JPEG")
|
|
base64_image = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
|
|
|
messages = [
|
|
{
|
|
"role": "system",
|
|
"content": f'''
|
|
You are a highly accurate image to caption transformer.
|
|
Describe the image content in English and Chinese respectively. Make sure to FOCUS on item CATEGORY and COLOR!
|
|
Do NOT provide NAMES! KEEP it SHORT!
|
|
While adhering to the following JSON schema: {Caption.model_json_schema()}
|
|
Following are some samples you should adhere to for style and tone:
|
|
{hist_str}
|
|
'''
|
|
},
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "text",
|
|
"text": "Describe the image in English and Chinese"
|
|
},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": f"data:image/jpeg;base64,{base64_image}"
|
|
}
|
|
]
|
|
}
|
|
]
|
|
|
|
chat_response = client.chat.complete(
|
|
model="pixtral-12b-2409",
|
|
messages=messages,
|
|
response_format = {
|
|
"type": "json_object",
|
|
}
|
|
)
|
|
|
|
response_content = chat_response.choices[0].message.content
|
|
|
|
try:
|
|
caption_dict = json.loads(response_content)
|
|
return Caption(**caption_dict)
|
|
except json.JSONDecodeError as e:
|
|
print(f"Error decoding JSON: {e}")
|
|
return None
|
|
|
|
|
|
def init_db():
|
|
conn = sqlite3.connect('feedback.db')
|
|
c = conn.cursor()
|
|
c.execute('''CREATE TABLE IF NOT EXISTS thumbs_up
|
|
(id INTEGER PRIMARY KEY AUTOINCREMENT,
|
|
timestamp TEXT,
|
|
input_data TEXT,
|
|
output_data TEXT)''')
|
|
conn.commit()
|
|
conn.close()
|
|
|
|
init_db()
|
|
|
|
def process_image(image):
|
|
if image is None:
|
|
return "Please upload an image first."
|
|
|
|
result = generate_caption(image)
|
|
|
|
if result:
|
|
return f"English caption: {result.en}\nChinese caption: {result.zh}"
|
|
else:
|
|
return "Failed to generate caption. Please check the API call or network connectivity."
|
|
|
|
def thumbs_up(image, caption):
|
|
|
|
buffered = BytesIO()
|
|
image.save(buffered, format="JPEG")
|
|
img_str = base64.b64encode(buffered.getvalue()).decode()
|
|
|
|
conn = sqlite3.connect('feedback.db')
|
|
c = conn.cursor()
|
|
c.execute("INSERT INTO thumbs_up (timestamp, input_data, output_data) VALUES (?, ?, ?)",
|
|
(datetime.now().isoformat(), img_str, caption))
|
|
conn.commit()
|
|
conn.close()
|
|
print(f"Thumbs up data saved to database.")
|
|
return gr.Notification("Thank you for your feedback!", type="success")
|
|
|
|
|
|
custom_css = """
|
|
.highlight-btn {
|
|
background-color: #3498db !important;
|
|
border-color: #3498db !important;
|
|
color: white !important;
|
|
}
|
|
.highlight-btn:hover {
|
|
background-color: #2980b9 !important;
|
|
border-color: #2980b9 !important;
|
|
}
|
|
"""
|
|
|
|
with gr.Blocks() as iface:
|
|
gr.Markdown("# Image Captioner")
|
|
gr.Markdown("Upload an image to generate captions in English and Chinese. Use the 'Thumbs Up' button if you like the result!")
|
|
|
|
with gr.Row():
|
|
with gr.Column(scale=1):
|
|
input_image = gr.Image(type="pil")
|
|
with gr.Row():
|
|
clear_btn = gr.Button("Clear")
|
|
submit_btn = gr.Button("Submit", elem_classes=["highlight-btn"])
|
|
|
|
with gr.Column(scale=1):
|
|
output_text = gr.Textbox()
|
|
thumbs_up_btn = gr.Button("Thumbs Up")
|
|
|
|
clear_btn.click(fn=lambda: None, inputs=None, outputs=input_image)
|
|
submit_btn.click(fn=process_image, inputs=input_image, outputs=output_text)
|
|
thumbs_up_btn.click(fn=thumbs_up, inputs=[input_image, output_text], outputs=None)
|
|
|
|
|
|
iface.launch(share=True) |