import gradio as gr import numpy as np import spaces import torch import spaces import random from diffusers import AutoPipelineForText2Image from PIL import Image MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 pipe = AutoPipelineForText2Image.from_pretrained( "ostris/Flex.2-preview", custom_pipeline="pipeline.py", torch_dtype=torch.bfloat16, ).to("cuda") # def calculate_optimal_dimensions(image: Image.Image): # # Extract the original dimensions # original_width, original_height = image.size # # Set constants # MIN_ASPECT_RATIO = 9 / 16 # MAX_ASPECT_RATIO = 16 / 9 # FIXED_DIMENSION = 1024 # # Calculate the aspect ratio of the original image # original_aspect_ratio = original_width / original_height # # Determine which dimension to fix # if original_aspect_ratio > 1: # Wider than tall # width = FIXED_DIMENSION # height = round(FIXED_DIMENSION / original_aspect_ratio) # else: # Taller than wide # height = FIXED_DIMENSION # width = round(FIXED_DIMENSION * original_aspect_ratio) # # Ensure dimensions are multiples of 8 # width = (width // 8) * 8 # height = (height // 8) * 8 # # Enforce aspect ratio limits # calculated_aspect_ratio = width / height # if calculated_aspect_ratio > MAX_ASPECT_RATIO: # width = (height * MAX_ASPECT_RATIO // 8) * 8 # elif calculated_aspect_ratio < MIN_ASPECT_RATIO: # height = (width / MIN_ASPECT_RATIO // 8) * 8 # # Ensure width and height remain above the minimum dimensions # width = max(width, 576) if width == FIXED_DIMENSION else width # height = max(height, 576) if height == FIXED_DIMENSION else height # return width, height @spaces.GPU def infer(edit_images, prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5,control_strength=0.5, control_stop=0.33, num_inference_steps=50, progress=gr.Progress(track_tqdm=True)): image = edit_images["background"].convert("RGB") # width, height = calculate_optimal_dimensions(image) mask = edit_images["layers"][0].convert("RGB") if randomize_seed: seed = random.randint(0, MAX_SEED) out_image = pipe( prompt=prompt, inpaint_image=image, inpaint_mask=mask, height=height, width=width, guidance_scale=guidance_scale, control_strength=control_strength, control_stop=control_stop, num_inference_steps=num_inference_steps, generator=torch.Generator("cpu").manual_seed(seed) ).images[0] return (image, out_image), seed examples = [ "a tiny astronaut hatching from an egg on the moon", "a cat holding a sign that says hello world", "an anime illustration of a wiener schnitzel", ] css=""" #col-container { margin: 0 auto; max-width: 1000px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# Flex.2 Preview - Inpaint Inpainting demo for Flex.2 Preview - Open Source 8B parameter Text to Image Diffusion Model with universal control and built-in inpainting support trained and devloped by [ostris](https://huggingface.co/ostris) [[apache-2.0 license](https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md)] [[model](https://huggingface.co/ostris/Flex.2-preview)] """) with gr.Row(): with gr.Column(): edit_image = gr.ImageEditor( label='Upload and draw mask for inpainting', type='pil', sources=["upload", "webcam"], image_mode='RGB', layers=False, brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"), height=600 ) prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run") result = gr.ImageSlider(label="Generated Image", type="pil", image_mode='RGB') with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): height = gr.Slider(64, 2048, value=512, step=64, label="Height") width = gr.Slider(64, 2048, value=512, step=64, label="Width") with gr.Row(): guidance_scale = gr.Slider(0.0, 20.0, value=3.5, step=0.1, label="Guidance Scale") control_strength = gr.Slider(0.0, 1.0, value=0.5, step=0.05, label="Control Strength") control_stop = gr.Slider(0.0, 1.0, value=0.33, step=0.05, label="Control Stop") num_inference_steps = gr.Slider(1, 100, value=50, step=1, label="Inference Steps") run_button.click( fn = infer, inputs = [edit_image, prompt, seed, randomize_seed, width, height, guidance_scale, control_strength, control_stop, num_inference_steps], outputs = [result, seed] ) demo.launch()