import gradio as gr import numpy as np import random import torch import spaces from PIL import Image import os from huggingface_hub import hf_hub_download import torch from diffusers import DiffusionPipeline from huggingface_hub import hf_hub_download # Constants MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 DEVICE = "cuda" if torch.cuda.is_available() else "cpu" pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", custom_pipeline="pipeline_flux_rf_inversion", torch_dtype=torch.bfloat16) pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), lora_scale=0.125) pipe.fuse_lora(lora_scale=0.125) pipe.to(DEVICE) examples = [[Image.open("cat.jpg"), "a tiger"]] def reset_do_inversion(): return True def resize_img(image, max_size=1024): width, height = image.size scaling_factor = min(max_size / width, max_size / height) new_width = int(width * scaling_factor) new_height = int(height * scaling_factor) return image.resize((new_width, new_height), Image.LANCZOS) @spaces.GPU def invert_and_edit(image, prompt, eta, gamma, start_timestep, stop_timestep, num_inversion_steps, width, height, inverted_latents, image_latents, latent_image_ids, do_inversion, seed, randomize_seed, ): if randomize_seed: seed = random.randint(0, MAX_SEED) if do_inversion: inverted_latents_tensor, image_latents_tensor, latent_image_ids_tensor = pipe.invert(image, num_inversion_steps=num_inversion_steps, gamma=gamma) inverted_latents = gr.State(value=inverted_latents_tensor) image_latents = gr.State(value=image_latents_tensor) latent_image_ids = gr.State(value=latent_image_ids_tensor) do_inversion = False output = pipe(prompt, inverted_latents=inverted_latents.value, image_latents=image_latents.value, latent_image_ids=latent_image_ids.value, start_timestep=start_timestep, stop_timestep=stop_timestep, num_inference_steps=num_inversion_steps, eta=eta, ).images[0] return output, inverted_latents.value, image_latents.value, latent_image_ids.value, do_inversion, seed # UI CSS css = """ #col-container { margin: 0 auto; max-width: 960px; } """ # Create the Gradio interface with gr.Blocks(css=css) as demo: inverted_latents = gr.State() image_latents = gr.State() latent_image_ids = gr.State() do_inversion = gr.State(False) with gr.Column(elem_id="col-container"): gr.Markdown(f"""# RF inversion 🖌️🏞️ ### Edit real images with FLUX.1 [dev] based on the algorithm proposed in [*Semantic Image Inversion and Editing using Stochastic Rectified Differential Equations*](https://rf-inversion.github.io/data/rf-inversion.pdf) [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[project page](https://rf-inversion.github.io/) [[arxiv](https://arxiv.org/pdf/2410.10792)] """) with gr.Row(): with gr.Column(): input_image = gr.Image( label="Input Image", type="pil" ) prompt = gr.Text( label="Edit Prompt", max_lines=1, placeholder="describe the edited output", ) with gr.Row(): start_timestep = gr.Slider( label="start timestep", info = "lower gamma to ehnace the edits", minimum=0.0, maximum=1.0, step=0.1, value=0.9, ) stop_timestep = gr.Slider( label="stop timestep", info = "lower gamma to ehnace the edits", minimum=0.0, maximum=1.0, step=0.1, value=0.9, ) eta = gr.Slider( label="eta", info = "lower eta to ehnace the edits", minimum=0.0, maximum=1.0, step=0.1, value=0.9, ) run_button = gr.Button("Edit", variant="primary") with gr.Column(): result = gr.Image(label="Result") with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): gamma = gr.Slider( label="gamma", info = "lower gamma to ehnace the edits", minimum=0.0, maximum=1.0, step=0.1, value=0.9, ) num_inversion_steps = gr.Slider( label="num inversion steps", minimum=1, maximum=50, step=1, value=8, ) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) run_button.click( fn=invert_and_edit, inputs=[ input_image, prompt, eta, gamma, start_timestep, stop_timestep, num_inversion_steps, width, height, inverted_latents, image_latents, latent_image_ids, do_inversion, seed, randomize_seed ], outputs=[result, inverted_latents, image_latents, latent_image_ids, do_inversion, seed], ) gr.Examples( examples=examples, inputs=[input_image, prompt,], outputs=[result, inverted_latents, image_latents, latent_image_ids, do_inversion, seed], fn=infer, ) input_image.change( fn=reset_do_inversion, outputs=[do_inversion] ) if __name__ == "__main__": demo.launch()