Spaces:
Running
on
A10G
Running
on
A10G
Linoy Tsaban
commited on
Commit
·
0d84727
1
Parent(s):
c37a174
Update app.py
Browse files
app.py
CHANGED
@@ -78,86 +78,28 @@ def edit(input_image,
|
|
78 |
cfg_scale_src = 3.5,
|
79 |
cfg_scale_tar = 15,
|
80 |
skip=36,
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
bottom = 0
|
86 |
):
|
87 |
torch.manual_seed(seed)
|
88 |
# offsets=(0,0,0,0)
|
89 |
x0 = load_512(input_image, left,right, top, bottom, device)
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
# #
|
96 |
-
# xT=wts[skip]
|
97 |
-
# etas=1.0
|
98 |
-
# prompts=[tar_prompt]
|
99 |
-
# cfg_scales=[cfg_scale_tar]
|
100 |
-
# prog_bar=False
|
101 |
-
# zs=zs[skip:]
|
102 |
-
|
103 |
-
|
104 |
-
# batch_size = len(prompts)
|
105 |
-
|
106 |
-
# cfg_scales_tensor = torch.Tensor(cfg_scales).view(-1,1,1,1).to(sd_pipe.device)
|
107 |
-
|
108 |
-
# text_embeddings = encode_text(sd_pipe, prompts)
|
109 |
-
# uncond_embedding = encode_text(sd_pipe, [""] * batch_size)
|
110 |
-
|
111 |
-
# if etas is None: etas = 0
|
112 |
-
# if type(etas) in [int, float]: etas = [etas]*sd_pipe.scheduler.num_inference_steps
|
113 |
-
# assert len(etas) == sd_pipe.scheduler.num_inference_steps
|
114 |
-
# timesteps = sd_pipe.scheduler.timesteps.to(sd_pipe.device)
|
115 |
-
|
116 |
-
# xt = xT.expand(batch_size, -1, -1, -1)
|
117 |
-
# op = tqdm(timesteps[-zs.shape[0]:]) if prog_bar else timesteps[-zs.shape[0]:]
|
118 |
-
|
119 |
-
# t_to_idx = {int(v):k for k,v in enumerate(timesteps[-zs.shape[0]:])}
|
120 |
-
|
121 |
-
# for t in op:
|
122 |
-
# idx = t_to_idx[int(t)]
|
123 |
-
# ## Unconditional embedding
|
124 |
-
# with torch.no_grad():
|
125 |
-
# uncond_out = sd_pipe.unet.forward(xt, timestep = t,
|
126 |
-
# encoder_hidden_states = uncond_embedding)
|
127 |
-
|
128 |
-
# ## Conditional embedding
|
129 |
-
# if prompts:
|
130 |
-
# with torch.no_grad():
|
131 |
-
# cond_out = sd_pipe.unet.forward(xt, timestep = t,
|
132 |
-
# encoder_hidden_states = text_embeddings)
|
133 |
-
|
134 |
-
|
135 |
-
# z = zs[idx] if not zs is None else None
|
136 |
-
# z = z.expand(batch_size, -1, -1, -1)
|
137 |
-
# if prompts:
|
138 |
-
# ## classifier free guidance
|
139 |
-
# noise_pred = uncond_out.sample + cfg_scales_tensor * (cond_out.sample - uncond_out.sample)
|
140 |
-
# else:
|
141 |
-
# noise_pred = uncond_out.sample
|
142 |
-
# # 2. compute less noisy image and set x_t -> x_t-1
|
143 |
-
# xt = reverse_step(sd_pipe, noise_pred, t, xt, eta = etas[idx], variance_noise = z)
|
144 |
-
|
145 |
-
# # interm denoised img
|
146 |
-
# with autocast("cuda"), inference_mode():
|
147 |
-
# x0_dec = sd_pipe.vae.decode(1 / 0.18215 * xt).sample
|
148 |
-
# if x0_dec.dim()<4:
|
149 |
-
# x0_dec = x0_dec[None,:,:,:]
|
150 |
-
# interm_img = image_grid(x0_dec)
|
151 |
-
# yield interm_img
|
152 |
-
|
153 |
-
# yield interm_img
|
154 |
|
155 |
-
|
156 |
output = sample(wt, zs, wts, prompt_tar=tar_prompt, cfg_scale_tar=cfg_scale_tar, skip=skip)
|
157 |
|
158 |
return output
|
159 |
|
160 |
|
|
|
|
|
|
|
|
|
161 |
|
162 |
|
163 |
|
@@ -180,7 +122,9 @@ For faster inference without waiting in queue, you may duplicate the space and u
|
|
180 |
<p/>"""
|
181 |
with gr.Blocks() as demo:
|
182 |
gr.HTML(intro)
|
183 |
-
|
|
|
|
|
184 |
with gr.Row():
|
185 |
input_image = gr.Image(label="Input Image", interactive=True)
|
186 |
input_image.style(height=512, width=512)
|
@@ -188,7 +132,7 @@ with gr.Blocks() as demo:
|
|
188 |
# inverted_image.style(height=512, width=512)
|
189 |
output_image = gr.Image(label=f"Edited Image", interactive=False)
|
190 |
output_image.style(height=512, width=512)
|
191 |
-
|
192 |
|
193 |
with gr.Row():
|
194 |
# with gr.Column(scale=1, min_width=100):
|
@@ -214,14 +158,6 @@ with gr.Blocks() as demo:
|
|
214 |
skip = gr.Slider(minimum=0, maximum=40, value=36, precision=0, label="Skip Steps", interactive=True)
|
215 |
cfg_scale_tar = gr.Slider(minimum=7, maximum=18,value=15, label=f"Target Guidance Scale", interactive=True)
|
216 |
seed = gr.Number(value=0, precision=0, label="Seed", interactive=True)
|
217 |
-
|
218 |
-
#shift
|
219 |
-
with gr.Column():
|
220 |
-
left = gr.Number(value=0, precision=0, label="Left Shift", interactive=True)
|
221 |
-
right = gr.Number(value=0, precision=0, label="Right Shift", interactive=True)
|
222 |
-
top = gr.Number(value=0, precision=0, label="Top Shift", interactive=True)
|
223 |
-
bottom = gr.Number(value=0, precision=0, label="Bottom Shift", interactive=True)
|
224 |
-
|
225 |
|
226 |
|
227 |
|
@@ -255,14 +191,16 @@ with gr.Blocks() as demo:
|
|
255 |
cfg_scale_tar,
|
256 |
skip,
|
257 |
seed,
|
258 |
-
|
259 |
-
|
260 |
-
top,
|
261 |
-
bottom
|
262 |
],
|
263 |
outputs=[output_image],
|
264 |
)
|
265 |
|
|
|
|
|
|
|
|
|
266 |
|
267 |
gr.Examples(
|
268 |
label='Examples',
|
|
|
78 |
cfg_scale_src = 3.5,
|
79 |
cfg_scale_tar = 15,
|
80 |
skip=36,
|
81 |
+
wt = None,
|
82 |
+
zs = None,
|
83 |
+
wts = None
|
84 |
+
|
|
|
85 |
):
|
86 |
torch.manual_seed(seed)
|
87 |
# offsets=(0,0,0,0)
|
88 |
x0 = load_512(input_image, left,right, top, bottom, device)
|
89 |
|
90 |
+
if not wt:
|
91 |
+
# invert and retrieve noise maps and latent
|
92 |
+
wt, zs, wts = invert(x0 =x0 , prompt_src=src_prompt, num_diffusion_steps=steps, cfg_scale_src=cfg_scale_src)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
|
|
94 |
output = sample(wt, zs, wts, prompt_tar=tar_prompt, cfg_scale_tar=cfg_scale_tar, skip=skip)
|
95 |
|
96 |
return output
|
97 |
|
98 |
|
99 |
+
def reset_latents():
|
100 |
+
wt = gr.State(value=None)
|
101 |
+
zs = gr.State(value=None)
|
102 |
+
wts = gr.State(value=None)
|
103 |
|
104 |
|
105 |
|
|
|
122 |
<p/>"""
|
123 |
with gr.Blocks() as demo:
|
124 |
gr.HTML(intro)
|
125 |
+
wt = gr.State(value=None)
|
126 |
+
zs = gr.State(value=None)
|
127 |
+
wts = gr.State(value=None)
|
128 |
with gr.Row():
|
129 |
input_image = gr.Image(label="Input Image", interactive=True)
|
130 |
input_image.style(height=512, width=512)
|
|
|
132 |
# inverted_image.style(height=512, width=512)
|
133 |
output_image = gr.Image(label=f"Edited Image", interactive=False)
|
134 |
output_image.style(height=512, width=512)
|
135 |
+
|
136 |
|
137 |
with gr.Row():
|
138 |
# with gr.Column(scale=1, min_width=100):
|
|
|
158 |
skip = gr.Slider(minimum=0, maximum=40, value=36, precision=0, label="Skip Steps", interactive=True)
|
159 |
cfg_scale_tar = gr.Slider(minimum=7, maximum=18,value=15, label=f"Target Guidance Scale", interactive=True)
|
160 |
seed = gr.Number(value=0, precision=0, label="Seed", interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
|
163 |
|
|
|
191 |
cfg_scale_tar,
|
192 |
skip,
|
193 |
seed,
|
194 |
+
new_inversion,
|
195 |
+
|
|
|
|
|
196 |
],
|
197 |
outputs=[output_image],
|
198 |
)
|
199 |
|
200 |
+
input_image.change(
|
201 |
+
fn = reset_latents
|
202 |
+
)
|
203 |
+
|
204 |
|
205 |
gr.Examples(
|
206 |
label='Examples',
|