Spaces:
Running
on
A10G
Running
on
A10G
Linoy Tsaban
commited on
Commit
·
39f64fe
1
Parent(s):
f1baf70
Update app.py
Browse files
app.py
CHANGED
@@ -33,10 +33,10 @@ def invert(x0, prompt_src="", num_diffusion_steps=100, cfg_scale_src = 3.5, eta
|
|
33 |
|
34 |
|
35 |
|
36 |
-
def sample(zs,
|
37 |
|
38 |
# reverse process (via Zs and wT)
|
39 |
-
w0, _ = inversion_reverse_process(sd_pipe, xT=
|
40 |
|
41 |
# vae decode image
|
42 |
with autocast("cuda"), inference_mode():
|
@@ -96,7 +96,7 @@ For faster inference without waiting in queue, you may duplicate the space and u
|
|
96 |
with gr.Blocks(css='style.css') as demo:
|
97 |
|
98 |
def reset_latents():
|
99 |
-
|
100 |
zs = gr.State(value=False)
|
101 |
|
102 |
|
@@ -121,15 +121,19 @@ with gr.Blocks(css='style.css') as demo:
|
|
121 |
if not xt:
|
122 |
# invert and retrieve noise maps and latent
|
123 |
zs, wts = invert(x0 =x0 , prompt_src=src_prompt, num_diffusion_steps=steps, cfg_scale_src=cfg_scale_src)
|
124 |
-
xt = gr.State(value=wts[skip])
|
125 |
-
zs = gr.State(value=zs[skip:])
|
|
|
|
|
126 |
|
127 |
-
output = sample(zs.value, xt.value, prompt_tar=tar_prompt, cfg_scale_tar=cfg_scale_tar)
|
|
|
128 |
|
129 |
-
return output,
|
130 |
|
131 |
gr.HTML(intro)
|
132 |
-
xt = gr.State(value=False)
|
|
|
133 |
zs = gr.State(value=False)
|
134 |
with gr.Row():
|
135 |
input_image = gr.Image(label="Input Image", interactive=True)
|
@@ -164,7 +168,7 @@ with gr.Blocks(css='style.css') as demo:
|
|
164 |
edit_button.click(
|
165 |
fn=edit,
|
166 |
inputs=[input_image,
|
167 |
-
|
168 |
src_prompt,
|
169 |
tar_prompt,
|
170 |
steps,
|
@@ -174,7 +178,7 @@ with gr.Blocks(css='style.css') as demo:
|
|
174 |
seed,
|
175 |
randomize_seed
|
176 |
],
|
177 |
-
outputs=[output_image,
|
178 |
)
|
179 |
|
180 |
input_image.change(
|
@@ -185,9 +189,9 @@ with gr.Blocks(css='style.css') as demo:
|
|
185 |
fn = reset_latents
|
186 |
)
|
187 |
|
188 |
-
skip.change(
|
189 |
-
|
190 |
-
)
|
191 |
|
192 |
|
193 |
gr.Examples(
|
|
|
33 |
|
34 |
|
35 |
|
36 |
+
def sample(zs, wts, prompt_tar="", cfg_scale_tar=15, eta = 1):
|
37 |
|
38 |
# reverse process (via Zs and wT)
|
39 |
+
w0, _ = inversion_reverse_process(sd_pipe, xT=wts[skip], etas=eta, prompts=[prompt_tar], cfg_scales=[cfg_scale_tar], prog_bar=False, zs=zs[skip:])
|
40 |
|
41 |
# vae decode image
|
42 |
with autocast("cuda"), inference_mode():
|
|
|
96 |
with gr.Blocks(css='style.css') as demo:
|
97 |
|
98 |
def reset_latents():
|
99 |
+
wts = gr.State(value=False)
|
100 |
zs = gr.State(value=False)
|
101 |
|
102 |
|
|
|
121 |
if not xt:
|
122 |
# invert and retrieve noise maps and latent
|
123 |
zs, wts = invert(x0 =x0 , prompt_src=src_prompt, num_diffusion_steps=steps, cfg_scale_src=cfg_scale_src)
|
124 |
+
# xt = gr.State(value=wts[skip])
|
125 |
+
# zs = gr.State(value=zs[skip:])
|
126 |
+
wts = gr.State(value=wts)
|
127 |
+
zs = gr.State(value=zs)
|
128 |
|
129 |
+
# output = sample(zs.value, xt.value, prompt_tar=tar_prompt, cfg_scale_tar=cfg_scale_tar)
|
130 |
+
output = sample(zs.value, wts.value, prompt_tar=tar_prompt, cfg_scale_tar=cfg_scale_tar)
|
131 |
|
132 |
+
return output, wts, zs
|
133 |
|
134 |
gr.HTML(intro)
|
135 |
+
# xt = gr.State(value=False)
|
136 |
+
wts = gr.State(value=False)
|
137 |
zs = gr.State(value=False)
|
138 |
with gr.Row():
|
139 |
input_image = gr.Image(label="Input Image", interactive=True)
|
|
|
168 |
edit_button.click(
|
169 |
fn=edit,
|
170 |
inputs=[input_image,
|
171 |
+
wts, zs,
|
172 |
src_prompt,
|
173 |
tar_prompt,
|
174 |
steps,
|
|
|
178 |
seed,
|
179 |
randomize_seed
|
180 |
],
|
181 |
+
outputs=[output_image, wts, zs],
|
182 |
)
|
183 |
|
184 |
input_image.change(
|
|
|
189 |
fn = reset_latents
|
190 |
)
|
191 |
|
192 |
+
# skip.change(
|
193 |
+
# fn = reset_latents
|
194 |
+
# )
|
195 |
|
196 |
|
197 |
gr.Examples(
|