Spaces:
Running
Running
File size: 11,311 Bytes
e60e568 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
'''
This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de).
PM4Py is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
PM4Py is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PM4Py. If not, see <https://www.gnu.org/licenses/>.
'''
from enum import Enum
from typing import Optional, Dict, Any, Tuple, List
import numpy as np
from pm4py.objects.petri_net.utils import align_utils, petri_utils as petri_utils
from pm4py.objects.petri_net.utils.incidence_matrix import IncidenceMatrix
from pm4py.objects.petri_net.obj import PetriNet, Marking
from pm4py.util import exec_utils, constants
from pm4py.util.lp import solver
class Parameters(Enum):
CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY
ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY
COSTS = "costs"
INCIDENCE_MATRIX = "incidence_matrix"
A = "A_matrix"
FULL_BOOTSTRAP_REQUIRED = "full_bootstrap_required"
class MarkingEquationSolver(object):
def __init__(self, net: PetriNet, im: Marking, fm: Marking,
parameters: Optional[Dict[Any, Any]] = None):
"""
Constructor
Parameters
---------------
net
Petri net
im
Initial marking
fm
Final marking
parameters
Parameters of the algorithm, including:
- Parameters.CASE_ID_KEY => attribute to use as case identifier
- Parameters.ACTIVITY_KEY => attribute to use as activity
- Parameters.COSTS => (if provided) the cost function (otherwise the default cost function is applied)
- Parameters.INCIDENCE_MATRIX => (if provided) the incidence matrix of the sync product net
- Parameters.A => (if provided) the A numpy matrix of the incidence matrix
- Parameters.FULL_BOOTSTRAP_REQUIRED => The preset/postset of places/transitions need to be inserted
"""
if parameters is None:
parameters = {}
costs = exec_utils.get_param_value(Parameters.COSTS, parameters, None)
if costs is None:
costs = align_utils.construct_standard_cost_function(net, align_utils.SKIP)
self.net = net
self.ini = im
self.fin = fm
self.costs = costs
self.incidence_matrix = exec_utils.get_param_value(Parameters.INCIDENCE_MATRIX, parameters,
IncidenceMatrix(self.net))
self.Aeq = exec_utils.get_param_value(Parameters.A, parameters, np.asmatrix(self.incidence_matrix.a_matrix))
self.full_bootstrap_required = exec_utils.get_param_value(Parameters.FULL_BOOTSTRAP_REQUIRED, parameters, True)
self.__build_entities()
self.__build_problem_components()
def __build_entities(self):
"""
Builds entities useful to define the marking equation
"""
transitions = self.incidence_matrix.transitions
self.inv_indices = {y: x for x, y in transitions.items()}
self.inv_indices = [self.inv_indices[i] for i in range(len(self.inv_indices))]
self.ini_vec = np.matrix(self.incidence_matrix.encode_marking(self.ini)).transpose()
self.fin_vec = np.matrix(self.incidence_matrix.encode_marking(self.fin)).transpose()
if self.full_bootstrap_required:
petri_utils.decorate_transitions_prepostset(self.net)
petri_utils.decorate_places_preset_trans(self.net)
def __build_problem_components(self):
"""
Builds the components needed to solve the marking equation
"""
self.beq = self.fin_vec - self.ini_vec
self.Aub = -np.eye(self.Aeq.shape[1])
self.bub = np.zeros((self.Aeq.shape[1], 1))
self.c = [self.costs[self.inv_indices[i]] for i in range(len(self.inv_indices))]
if solver.DEFAULT_LP_SOLVER_VARIANT == solver.CVXOPT_SOLVER_CUSTOM_ALIGN:
from cvxopt import matrix
self.Aeq_transf = matrix(self.Aeq.astype(np.float64))
self.Aub_transf = matrix(self.Aub.astype(np.float64))
self.c_transf = matrix([1.0 * x for x in self.c])
else:
self.Aeq_transf = self.Aeq
self.Aub_transf = self.Aub
self.c_transf = self.c
def get_components(self) -> Tuple[Any, Any, Any, Any, Any]:
"""
Retrieve the components (Numpy matrixes) of the problem
Returns
---------------
c
objective function
Aub
Inequalities matrix
bub
Inequalities vector
Aeq
Equalities matrix
beq
Equalities vector
"""
if solver.DEFAULT_LP_SOLVER_VARIANT == solver.CVXOPT_SOLVER_CUSTOM_ALIGN:
from cvxopt import matrix
self.beq_transf = matrix(self.beq.astype(np.float64))
self.bub_transf = matrix(self.bub.astype(np.float64))
else:
self.beq_transf = self.beq
self.bub_transf = self.bub
return self.c_transf, self.Aub_transf, self.bub_transf, self.Aeq_transf, self.beq_transf
def change_ini_vec(self, ini: Marking):
"""
Changes the initial marking of the synchronous product net
Parameters
--------------
ini
Initial marking
"""
self.ini = ini
self.ini_vec = np.matrix(self.incidence_matrix.encode_marking(ini)).transpose()
self.beq = self.fin_vec - self.ini_vec
def get_x_vector(self, sol_points: List[int]) -> List[int]:
"""
Returns the x vector of the solution
Parameters
--------------
sol_points
Solution of the integer problem
Returns
---------------
x
X vector
"""
return sol_points
def get_h(self, sol_points: List[int]) -> int:
"""
Returns the value of the heuristics
Parameters
--------------
sol_points
Solution of the integer problem
Returns
--------------
h
Heuristics value
"""
return int(np.dot(sol_points, self.c))
def get_activated_transitions(self, sol_points: List[int]) -> List[PetriNet.Transition]:
"""
Gets the transitions of the synchronous product net that are non-zero
in the solution of the marking equation
Parameters
--------------
sol_points
Solution of the integer problem
Returns
--------------
act_trans
Activated transitions
"""
act_trans = []
for i in range(len(sol_points)):
for j in range(sol_points[i]):
act_trans.append(self.inv_indices[i])
return act_trans
def solve(self) -> Tuple[int, List[int]]:
"""
Solves the marking equation, returning the heuristics and the x vector
Returns
-------------
h
Heuristics value
x
X vector
"""
c, Aub, bub, Aeq, beq = self.get_components()
return self.solve_given_components(c, Aub, bub, Aeq, beq)
def solve_given_components(self, c, Aub, bub, Aeq, beq):
"""
Solves the linear problem given the components
Parameters
--------------
c
Objective vector
Aub
Inequalities matrix
bub
Inequalities vector
Aeq
Equalities matrix
beq
Equalities vector
Returns
-------------
h
Heuristics value
x
X vector
"""
if solver.DEFAULT_LP_SOLVER_VARIANT == solver.CVXOPT_SOLVER_CUSTOM_ALIGN and type(c) is list:
from cvxopt import matrix
Aub = matrix(Aub.astype(np.float64))
bub = matrix(bub.astype(np.float64))
Aeq = matrix(Aeq.astype(np.float64))
beq = matrix(beq.astype(np.float64))
c = matrix([1.0 * x for x in c])
sol = solver.apply(c, Aub, bub, Aeq, beq, variant=solver.DEFAULT_LP_SOLVER_VARIANT)
sol_points = solver.get_points_from_sol(sol, variant=solver.DEFAULT_LP_SOLVER_VARIANT)
if sol_points is not None:
x = self.get_x_vector(sol_points)
x = [int(y) for y in x]
h = self.get_h(sol_points)
return h, x
return None, None
def get_firing_sequence(self, x: List[int]) -> Tuple[List[PetriNet.Transition], bool, int]:
"""
Gets a firing sequence from the X vector
Parameters
----------------
x
X vector
Returns
----------------
firing_sequence
Firing sequence
reach_fm
Boolean value that is true whether the firing sequence reaches the final marking
explained_events
Number of explaned events by the firing sequence
"""
activated_transitions = self.get_activated_transitions(x)
firing_sequence, reach_fm, explained_events = align_utils.search_path_among_sol(self.net, self.ini,
self.fin,
activated_transitions)
return firing_sequence, reach_fm, explained_events
def build(net: PetriNet, im: Marking, fm: Marking,
parameters: Optional[Dict[Any, Any]] = None) -> MarkingEquationSolver:
"""
Builds the marking equation out of a Petri net
Parameters
---------------
net
Petri net
im
Initial marking
fm
Final marking
parameters
Parameters of the algorithm, including:
- Parameters.CASE_ID_KEY => attribute to use as case identifier
- Parameters.ACTIVITY_KEY => attribute to use as activity
- Parameters.COSTS => (if provided) the cost function (otherwise the default cost function is applied)
- Parameters.INCIDENCE_MATRIX => (if provided) the incidence matrix of the Petri net
- Parameters.A => (if provided) the A numpy matrix of the incidence matrix
- Parameters.FULL_BOOTSTRAP_REQUIRED => The preset/postset of places/transitions need to be inserted
"""
if parameters is None:
parameters = {}
return MarkingEquationSolver(net, im, fm, parameters=parameters)
def get_h_value(solver: MarkingEquationSolver, parameters: Optional[Dict[Any, Any]] = None) -> int:
"""
Gets the heuristics value from the marking equation
Parameters
--------------
solver
Marking equation solver (class in this file)
parameters
Possible parameters of the algorithm
"""
return solver.solve()[0]
|