File size: 31,619 Bytes
e60e568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
'''
    This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de).

    PM4Py is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    PM4Py is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with PM4Py.  If not, see <https://www.gnu.org/licenses/>.
'''
from pm4py.util import exec_utils, nx_utils
from enum import Enum
from pm4py.objects.petri_net.utils import petri_utils
import copy
import numpy as np

# Importing for place invariants related stuff (s-components, uniform and weighted place invariants)
from pm4py.algo.analysis.woflan.place_invariants.place_invariants import compute_place_invariants
from pm4py.algo.analysis.woflan.place_invariants.utility import transform_basis
from pm4py.algo.analysis.woflan.place_invariants.s_component import compute_s_components
from pm4py.algo.analysis.woflan.place_invariants.s_component import compute_uncovered_places_in_component
from pm4py.algo.analysis.woflan.place_invariants.utility import \
    compute_uncovered_places as compute_uncovered_place_in_invariants

# Importing to discover not-well handled pairs
from pm4py.algo.analysis.woflan.not_well_handled_pairs.not_well_handled_pairs import \
    apply as compute_not_well_handled_pairs

# Minimal Coverability Graph
from pm4py.algo.analysis.woflan.graphs.minimal_coverability_graph.minimal_coverability_graph import \
    apply as minimal_coverability_graph
from pm4py.algo.analysis.woflan.graphs.utility import check_for_dead_tasks
from pm4py.algo.analysis.woflan.graphs.utility import check_for_improper_conditions
from pm4py.algo.analysis.woflan.graphs.utility import check_for_substates
from pm4py.algo.analysis.woflan.graphs.utility import convert_marking

# Restricted coverability graph
from pm4py.algo.analysis.woflan.graphs.restricted_coverability_graph.restricted_coverability_graph import \
    construct_tree as restricted_coverability_tree

# reachability Graph Creation
from pm4py.algo.analysis.woflan.graphs.reachability_graph.reachability_graph import apply as reachability_graph

from typing import Optional, Dict, Any, Union
from pm4py.objects.petri_net.obj import PetriNet, Marking


class Parameters(Enum):
    RETURN_ASAP_WHEN_NOT_SOUND = "return_asap_when_not_sound"
    PRINT_DIAGNOSTICS = "print_diagnostics"
    RETURN_DIAGNOSTICS = "return_diagnostics"


class Outputs(Enum):
    S_C_NET = "s_c_net"
    PLACE_INVARIANTS = "place_invariants"
    UNIFORM_PLACE_INVARIANTS = "uniform_place_invariants"
    S_COMPONENTS = "s_components"
    UNCOVERED_PLACES_S_COMPONENT = "uncovered_places_s_component"
    NOT_WELL_HANDLED_PAIRS = "not_well_handled_pairs"
    LEFT = "left"
    UNCOVERED_PLACES_UNIFORM = "uncovered_places_uniform"
    WEIGHTED_PLACE_INVARIANTS = "weighted_place_invariants"
    UNCOVERED_PLACES_WEIGHTED = "uncovered_places_weighted"
    MCG = "mcg"
    DEAD_TASKS = "dead_tasks"
    R_G_S_C = "r_g_s_c"
    R_G = "r_g"
    LOCKING_SCENARIOS = "locking_scenarios"
    RESTRICTED_COVERABILITY_TREE = "restricted_coverability_tree"
    DIAGNOSTIC_MESSAGES = "diagnostic_messages"


class woflan:
    def __init__(self, net, initial_marking, final_marking, print_diagnostics=False):
        self.net = net
        self.initial_marking = initial_marking
        self.final_marking = final_marking
        self.print_diagnostics = print_diagnostics
        self.s_c_net = None
        self.place_invariants = None
        self.uniform_place_invariants = None
        self.s_components = None
        self.uncovered_places_s_component = None
        self.not_well_handled_pairs = None
        self.left = None
        self.uncovered_places_uniform = None
        self.weighted_place_invariants = None
        self.uncovered_places_weighted = None
        self.mcg = None
        self.dead_tasks = None
        self.r_g_s_c = None
        self.r_g = None
        self.locking_scenarios = None
        self.restricted_coverability_tree = None
        self.diagnostic_messages = list()

    def set_s_c_net(self, s_c_net):
        self.s_c_net = s_c_net

    def set_place_invariants(self, invariants):
        self.place_invariants = invariants

    def set_uniform_place_invariants(self, invariants):
        self.uniform_place_invariants = invariants

    def set_s_components(self, s_components):
        self.s_components = s_components

    def set_uncovered_places_s_component(self, uncovered_places):
        self.uncovered_places_s_component = uncovered_places

    def set_not_well_handled_pairs(self, not_well_handled_pairs):
        self.not_well_handled_pairs = not_well_handled_pairs

    def set_left(self, left):
        self.left = left

    def set_uncovered_places_uniform(self, places):
        self.uncovered_places_uniform = places

    def set_weighted_place_invariants(self, invariants):
        self.weighted_place_invariants = invariants

    def set_uncovered_places_weighted(self, places):
        self.uncovered_places_weighted = places

    def set_mcg(self, mcg):
        self.mcg = mcg

    def set_dead_tasks(self, dead_tasks):
        self.dead_tasks = dead_tasks

    def set_r_g_s_c(self, r_g):
        self.r_g_s_c = r_g

    def set_r_g(self, r_g):
        self.r_g = r_g

    def set_locking_scenarios(self, scenarios):
        self.locking_scenarios = scenarios

    def set_restricted_coverability_tree(self, graph):
        self.restricted_coverability_tree = graph

    def get_net(self):
        return self.net

    def get_initial_marking(self):
        return self.initial_marking

    def get_final_marking(self):
        return self.final_marking

    def get_s_c_net(self):
        return self.s_c_net

    def get_place_invariants(self):
        return self.place_invariants

    def get_uniform_place_invariants(self):
        return self.uniform_place_invariants

    def get_s_components(self):
        return self.s_components

    def get_uncovered_places_s_component(self):
        return self.uncovered_places_s_component

    def get_not_well_handled_pairs(self):
        return self.not_well_handled_pairs

    def get_left(self):
        return self.left

    def get_uncovered_places_uniform(self):
        return self.uncovered_places_uniform

    def get_weighted_place_invariants(self):
        return self.weighted_place_invariants

    def get_uncovered_places_weighted(self):
        return self.uncovered_places_weighted

    def get_mcg(self):
        return self.mcg

    def get_dead_tasks(self):
        return self.dead_tasks

    def get_r_g_s_c(self):
        return self.r_g_s_c

    def get_r_g(self):
        return self.r_g

    def get_locking_scenarios(self):
        return self.locking_scenarios

    def get_restricted_coverability_tree(self):
        return self.restricted_coverability_tree

    def get_output(self):
        """
        Returns a dictionary representation of the
        entities that are calculated during WOFLAN
        """
        ret = {}
        if self.s_c_net is not None:
            ret[Outputs.S_C_NET.value] = self.s_c_net
        if self.place_invariants is not None:
            ret[Outputs.PLACE_INVARIANTS.value] = self.place_invariants
        if self.uniform_place_invariants is not None:
            ret[Outputs.UNIFORM_PLACE_INVARIANTS.value] = self.uniform_place_invariants
        if self.s_components is not None:
            ret[Outputs.S_COMPONENTS.value] = self.s_components
        if self.uncovered_places_s_component is not None:
            ret[Outputs.UNCOVERED_PLACES_S_COMPONENT.value] = self.uncovered_places_s_component
        if self.not_well_handled_pairs is not None:
            ret[Outputs.NOT_WELL_HANDLED_PAIRS.value] = self.not_well_handled_pairs
        if self.left is not None:
            ret[Outputs.LEFT.value] = self.left
        if self.uncovered_places_uniform is not None:
            ret[Outputs.UNCOVERED_PLACES_UNIFORM.value] = self.uncovered_places_uniform
        if self.weighted_place_invariants is not None:
            ret[Outputs.WEIGHTED_PLACE_INVARIANTS.value] = self.weighted_place_invariants
        if self.uncovered_places_weighted is not None:
            ret[Outputs.UNCOVERED_PLACES_WEIGHTED.value] = self.uncovered_places_weighted
        if self.mcg is not None:
            ret[Outputs.MCG.value] = self.mcg
        if self.dead_tasks is not None:
            ret[Outputs.DEAD_TASKS.value] = self.dead_tasks
        if self.r_g_s_c is not None:
            ret[Outputs.R_G_S_C.value] = self.r_g_s_c
        if self.r_g is not None:
            ret[Outputs.R_G] = self.r_g
        if self.locking_scenarios is not None:
            ret[Outputs.LOCKING_SCENARIOS] = self.locking_scenarios
        if self.restricted_coverability_tree is not None:
            ret[Outputs.RESTRICTED_COVERABILITY_TREE] = self.restricted_coverability_tree
        ret[Outputs.DIAGNOSTIC_MESSAGES] = self.diagnostic_messages
        return ret


def short_circuit_petri_net(net, print_diagnostics=False):
    """
    Fist, sink and source place are identified. Then, a transition from source to sink is added to short-circuited
    the given petri net. If there is no unique source and sink place, an error gets returned
    :param net: Petri net that is going to be short circuited
    :return:
    """
    s_c_net = copy.deepcopy(net)
    no_source_places = 0
    no_sink_places = 0
    sink = None
    source = None
    for place in s_c_net.places:
        if len(place.in_arcs) == 0:
            source = place
            no_source_places += 1
        if len(place.out_arcs) == 0:
            sink = place
            no_sink_places += 1
    if (sink is not None) and (source is not None) and no_source_places == 1 and no_sink_places == 1:
        # If there is one unique source and sink place, short circuit Petri Net is constructed
        t_1 = PetriNet.Transition("short_circuited_transition", "short_circuited_transition")
        s_c_net.transitions.add(t_1)
        # add arcs in short-circuited net
        petri_utils.add_arc_from_to(sink, t_1, s_c_net)
        petri_utils.add_arc_from_to(t_1, source, s_c_net)
        return s_c_net, []
    else:
        if sink is None:
            if print_diagnostics:
                print("There is no sink place.")
            return None, ["There is no sink place."]
        elif source is None:
            if print_diagnostics:
                print("There is no source place.")
            return None, ["There is no source place."]
        elif no_source_places > 1:
            if print_diagnostics:
                print("There is more than one source place.")
            return None, ["There is more than one source place."]
        elif no_sink_places > 1:
            if print_diagnostics:
                print("There is more than one sink place.")
            return None, ["There is more than one sink place."]


def step_1(woflan_object, return_asap_when_unsound=False):
    """
    In the first step, we check if the input is given correct. We check if net is an PM4Py Petri Net representation
    and if the exist a correct entry for the initial and final marking.
    :param woflan_object: Object that contains all necessary information
    :return: Proceed with step 2 if ok; else False
    """

    def check_if_marking_in_net(marking, net):
        """
        Checks if the marked place exists in the Petri Net and if there is only one i_m and f_m
        :param marking: Marking of Petri Net
        :param net: PM4Py representation of Petri Net
        :return: Boolean. True if marking can exists; False if not.
        """
        for place in marking:
            if place in net.places:
                return True
        return False

    if isinstance(woflan_object.get_net(), PetriNet):
        if len(woflan_object.get_initial_marking()) != 1 or len(woflan_object.get_final_marking()) != 1:
            woflan_object.diagnostic_messages.append('There is more than one initial or final marking.')
            if woflan_object.print_diagnostics:
                print('There is more than one initial or final marking.')
            return False
        if check_if_marking_in_net(woflan_object.get_initial_marking(), woflan_object.get_net()):
            if check_if_marking_in_net(woflan_object.get_final_marking(), woflan_object.get_net()):
                woflan_object.diagnostic_messages.append('Input is ok.')
                if woflan_object.print_diagnostics:
                    print('Input is ok.')
                return step_2(woflan_object, return_asap_when_unsound=return_asap_when_unsound)
    woflan_object.diagnostic_messages.append('The Petri Net is not PM4Py Petri Net represenatation.')
    if woflan_object.print_diagnostics:
        print('The Petri Net is not PM4Py Petri Net represenatation.')
    return False


def step_2(woflan_object, return_asap_when_unsound=False):
    """
    This method checks if a given Petri net is a workflow net. First, the Petri Net gets short-circuited
    (connect start and end place with a tau-transition. Second, the Petri Net gets converted into a networkx graph.
    Finally, it is tested if the resulting graph is a strongly connected component.
    :param woflan_object: Woflan objet containing all information
    :return: Bool=True if net is a WF-Net
    """

    def transform_petri_net_into_regular_graph(still_need_to_discover):
        """
        Ths method transforms a list of places and transitions into a networkx graph
        :param still_need_to_discover: set of places and transition that are not fully added to graph
        :return:
        """
        G = nx_utils.DiGraph()
        while len(still_need_to_discover) > 0:
            element = still_need_to_discover.pop()
            G.add_node(element.name)
            for in_arc in element.in_arcs:
                G.add_node(in_arc.source.name)
                G.add_edge(in_arc.source.name, element.name)
            for out_arc in element.out_arcs:
                G.add_node(out_arc.target.name)
                G.add_edge(element.name, out_arc.target.name)
        return G

    s_c_net, diagnostic_messages = short_circuit_petri_net(woflan_object.get_net(),
                                                           print_diagnostics=woflan_object.print_diagnostics)
    woflan_object.set_s_c_net(s_c_net)
    woflan_object.diagnostic_messages += diagnostic_messages
    if woflan_object.get_s_c_net() == None:
        return False
    to_discover = woflan_object.get_s_c_net().places | woflan_object.get_s_c_net().transitions
    graph = transform_petri_net_into_regular_graph(to_discover)
    if not nx_utils.is_strongly_connected(graph):
        woflan_object.diagnostic_messages.append('Petri Net is a not a worflow net.')
        if woflan_object.print_diagnostics:
            print('Petri Net is a not a worflow net.')
        return False
    else:
        woflan_object.diagnostic_messages.append('Petri Net is a workflow net.')
        if woflan_object.print_diagnostics:
            print('Petri Net is a workflow net.')
        return step_3(woflan_object, return_asap_when_unsound=return_asap_when_unsound)


def step_3(woflan_object, return_asap_when_unsound=False):
    woflan_object.set_place_invariants(compute_place_invariants(woflan_object.get_s_c_net()))
    woflan_object.set_uniform_place_invariants(transform_basis(woflan_object.get_place_invariants(), style='uniform'))
    woflan_object.set_s_components(
        compute_s_components(woflan_object.get_s_c_net(), woflan_object.get_uniform_place_invariants()))
    woflan_object.set_uncovered_places_s_component(
        compute_uncovered_places_in_component(woflan_object.get_s_components(), woflan_object.get_s_c_net()))
    if len(woflan_object.get_uncovered_places_s_component()) == 0:
        woflan_object.set_left(True)
        woflan_object.diagnostic_messages.append('Every place is covered by s-components.')
        if woflan_object.print_diagnostics:
            print('Every place is covered by s-components.')
        return step_10(woflan_object, return_asap_when_unsound=return_asap_when_unsound)
    else:
        woflan_object.diagnostic_messages.append('The following places are not covered by an s-component: {}.'.format(
                woflan_object.get_uncovered_places_s_component()))
        if woflan_object.print_diagnostics:
            print('The following places are not covered by an s-component: {}.'.format(
                woflan_object.get_uncovered_places_s_component()))
        if return_asap_when_unsound:
            return False
        return step_4(woflan_object, return_asap_when_unsound=return_asap_when_unsound)


def step_4(woflan_object, return_asap_when_unsound=False):
    woflan_object.set_not_well_handled_pairs(compute_not_well_handled_pairs(woflan_object.get_s_c_net()))
    if len(woflan_object.get_not_well_handled_pairs()) == 0:
        woflan_object.diagnostic_messages.append('Petri Net is unsound.')
        if woflan_object.print_diagnostics:
            print('Petri Net is unsound.')
        woflan_object.set_left(False)
        if return_asap_when_unsound:
            return False
        return step_5(woflan_object, return_asap_when_unsound=return_asap_when_unsound)
    else:
        woflan_object.diagnostic_messages.append('Not well-handled pairs are: {}.'.format(
            woflan_object.get_not_well_handled_pairs()))
        if woflan_object.print_diagnostics:
            print('Not well-handled pairs are: {}.'.format(woflan_object.get_not_well_handled_pairs()))
        woflan_object.set_left(True)
        return step_5(woflan_object, return_asap_when_unsound=return_asap_when_unsound)


def step_5(woflan_object, return_asap_when_unsound=False):
    woflan_object.set_uncovered_places_uniform(
        compute_uncovered_place_in_invariants(woflan_object.get_uniform_place_invariants(),
                                              woflan_object.get_s_c_net()))
    if len(woflan_object.get_uncovered_places_uniform()) == 0:
        woflan_object.diagnostic_messages.append('There are no uncovered places in uniform invariants.')
        if woflan_object.print_diagnostics:
            print('There are no uncovered places in uniform invariants.')
        return step_10(woflan_object, return_asap_when_unsound=return_asap_when_unsound)
    else:
        woflan_object.diagnostic_messages.append('The following places are uncovered in uniform invariants: {}'.format(
            woflan_object.get_uncovered_places_uniform()))
        if woflan_object.print_diagnostics:
            print('The following places are uncovered in uniform invariants: {}'.format(
                woflan_object.get_uncovered_places_uniform()))
        return step_6(woflan_object, return_asap_when_unsound=return_asap_when_unsound)


def step_6(woflan_object, return_asap_when_unsound=False):
    woflan_object.set_weighted_place_invariants(transform_basis(woflan_object.get_place_invariants(), style='weighted'))
    woflan_object.set_uncovered_places_weighted(
        compute_uncovered_place_in_invariants(woflan_object.get_weighted_place_invariants(),
                                              woflan_object.get_s_c_net()))
    if len(woflan_object.get_uncovered_places_weighted()) == 0:
        woflan_object.diagnostic_messages.append('There are no uncovered places in weighted invariants.')
        if woflan_object.print_diagnostics:
            print('There are no uncovered places in weighted invariants.')
        return step_10(woflan_object, return_asap_when_unsound=return_asap_when_unsound)
    else:
        woflan_object.diagnostic_messages.append('The following places are uncovered in weighted invariants: {}'.format(
            woflan_object.get_uncovered_places_weighted()))
        if woflan_object.print_diagnostics:
            print('The following places are uncovered in weighted invariants: {}'.format(
                woflan_object.get_uncovered_places_weighted()))
        return step_7(woflan_object, return_asap_when_unsound=return_asap_when_unsound)


def step_7(woflan_object, return_asap_when_unsound=False):
    woflan_object.set_mcg(minimal_coverability_graph(woflan_object.get_s_c_net(), woflan_object.get_initial_marking(),
                                                     woflan_object.get_net()))
    if len(check_for_improper_conditions(woflan_object.get_mcg())) == 0:
        woflan_object.diagnostic_messages.append('No improper coditions.')
        if woflan_object.print_diagnostics:
            print('No improper conditions.')
        if woflan_object.get_left == True:
            return step_8(woflan_object, return_asap_when_unsound=return_asap_when_unsound)
        else:
            return step_10(woflan_object, return_asap_when_unsound=return_asap_when_unsound)
    else:
        woflan_object.diagnostic_messages.append('Improper WPD. The following are the improper conditions: {}.'.format(
            check_for_improper_conditions(woflan_object.get_mcg())))
        if woflan_object.print_diagnostics:
            print('Improper WPD. The following are the improper conditions: {}.'.format(
                check_for_improper_conditions(woflan_object.get_mcg())))
        if return_asap_when_unsound:
            return False
        return step_9(woflan_object, return_asap_when_unsound=return_asap_when_unsound)


def step_8(woflan_object, return_asap_when_unsound=False):
    if check_for_substates(woflan_object.get_mcg()):
        return step_10(woflan_object, return_asap_when_unsound=return_asap_when_unsound)
    else:
        return step_10(woflan_object, return_asap_when_unsound=return_asap_when_unsound)


def step_9(woflan_object, return_asap_when_unsound=False):
    woflan_object.diagnostic_messages.append('The following sequences are unbounded: {}'.format(
        compute_unbounded_sequences(woflan_object)))
    if woflan_object.print_diagnostics:
        print('The following sequences are unbounded: {}'.format(compute_unbounded_sequences(woflan_object)))
    return False


def step_10(woflan_object, return_asap_when_unsound=False):
    if woflan_object.get_mcg() == None:
        woflan_object.set_mcg(
            minimal_coverability_graph(woflan_object.get_s_c_net(), woflan_object.get_initial_marking(),
                                       woflan_object.get_net()))
    woflan_object.set_dead_tasks(check_for_dead_tasks(woflan_object.get_s_c_net(), woflan_object.get_mcg()))
    if len(woflan_object.get_dead_tasks()) == 0:
        woflan_object.diagnostic_messages.append('There are no dead tasks.')
        if woflan_object.print_diagnostics:
            print('There are no dead tasks.')
        if woflan_object.get_left() == True:
            return step_11(woflan_object, return_asap_when_unsound=return_asap_when_unsound)
        else:
            if return_asap_when_unsound:
                return False
            return step_12(woflan_object, return_asap_when_unsound=return_asap_when_unsound)
    else:
        woflan_object.diagnostic_messages.append('The following tasks are dead: {}'.format(
            woflan_object.get_dead_tasks()))
        if woflan_object.print_diagnostics:
            print('The following tasks are dead: {}'.format(woflan_object.get_dead_tasks()))
        return False


def step_11(woflan_object, return_asap_when_unsound=False):
    woflan_object.set_r_g_s_c(
        reachability_graph(woflan_object.get_s_c_net(), woflan_object.get_initial_marking(), woflan_object.get_net()))
    if nx_utils.is_strongly_connected(woflan_object.get_r_g_s_c()):
        woflan_object.diagnostic_messages.append('All tasks are live.')
        if woflan_object.print_diagnostics:
            print('All tasks are live.')
        return True
    else:
        if return_asap_when_unsound:
            return False
        return step_13(woflan_object, return_asap_when_unsound=return_asap_when_unsound)


def step_12(woflan_object, return_asap_when_unsound=False):
    woflan_object.set_r_g_s_c(
        reachability_graph(woflan_object.get_s_c_net(), woflan_object.get_initial_marking(), woflan_object.get_net()))
    woflan_object.diagnostic_messages.append('There are non-live tasks.')
    if woflan_object.print_diagnostics:
        print('There are non-live tasks.')
    if return_asap_when_unsound:
        return False
    return step_13(woflan_object, return_asap_when_unsound=return_asap_when_unsound)


def step_13(woflan_object, return_asap_when_unsound=False):
    woflan_object.set_locking_scenarios(compute_non_live_sequences(woflan_object))
    woflan_object.diagnostic_messages.append('The following sequences lead to deadlocks: {}.'.format(
        woflan_object.get_locking_scenarios()))
    if woflan_object.print_diagnostics:
        print('The following sequences lead to deadlocks: {}.'.format(woflan_object.get_locking_scenarios()))
    return False


def apply(net: PetriNet, i_m: Marking, f_m: Marking, parameters: Optional[Dict[Union[str, Parameters], Any]] = None) -> Union[bool, Any]:
    """
    Apply the Woflan Soundness check. Trough this process, different steps are executed.
    :param net: Petri Net representation of PM4Py
    :param i_m: initial marking of given Net. Marking object of PM4Py
    :param f_m: final marking of given Net. Marking object of PM4Py
    :return: True, if net is sound; False otherwise.
    """
    if parameters is None:
        parameters = {}
    return_asap_when_unsound = exec_utils.get_param_value(Parameters.RETURN_ASAP_WHEN_NOT_SOUND, parameters, False)
    print_diagnostics = exec_utils.get_param_value(Parameters.PRINT_DIAGNOSTICS, parameters, True)
    return_diagnostics = exec_utils.get_param_value(Parameters.RETURN_DIAGNOSTICS, parameters, False)

    woflan_object = woflan(net, i_m, f_m, print_diagnostics=print_diagnostics)
    step_1_res = step_1(woflan_object, return_asap_when_unsound=return_asap_when_unsound)

    if return_diagnostics:
        return step_1_res, woflan_object.get_output()

    return step_1_res


def compute_non_live_sequences(woflan_object):
    """
    We want to compute the sequences of transitions which lead to deadlocks.
    To do this, we first compute a reachbility graph (possible, since we know that the Petri Net is bounded) and then we
    convert it to a spanning tree. Afterwards, we compute the paths which lead to nodes from which the final marking cannot
    be reached. Note: We are searching for the shortest sequence. After the first red node, all successors are also red.
    Therefore, we do not have to consider them.
    :param woflan_object: Object that contains the necessary information
    :return: List of sequence of transitions, each sequence is a list
    """
    woflan_object.set_r_g(reachability_graph(woflan_object.get_net(), woflan_object.get_initial_marking()))
    f_m = convert_marking(woflan_object.get_net(), woflan_object.get_final_marking())
    sucessfull_terminate_state = None
    for node in woflan_object.get_r_g().nodes:
        if all(np.equal(woflan_object.get_r_g().nodes[node]['marking'], f_m)):
            sucessfull_terminate_state = node
            break
    # red nodes are those from which the final marking is not reachable
    red_nodes = []
    for node in woflan_object.get_r_g().nodes:
        if not nx_utils.has_path(woflan_object.get_r_g(), node, sucessfull_terminate_state):
            red_nodes.append(node)
    # Compute directed spanning tree
    spanning_tree = nx_utils.Edmonds(woflan_object.get_r_g()).find_optimum()
    queue = set()
    paths = {}
    # root node
    queue.add(0)
    paths[0] = []
    processed_nodes = set()
    red_paths = []
    while len(queue) > 0:
        v = queue.pop()
        for node in spanning_tree.neighbors(v):
            if node not in paths and node not in processed_nodes:
                paths[node] = paths[v].copy()
                # we can use directly 0 here, since we are working on a spanning tree and there should be no more edges to a node
                paths[node].append(woflan_object.get_r_g().get_edge_data(v, node)[0]['transition'])
                if node not in red_nodes:
                    queue.add(node)
                else:
                    red_paths.append(paths[node])
        processed_nodes.add(v)
    return red_paths


def compute_unbounded_sequences(woflan_object):
    """
    We compute the sequences which lead to an infinite amount of tokens. To do this, we compute a restricted coverability tree.
    The tree works similar to the graph, despite we consider tree characteristics during the construction.
    :param woflan_object: Woflan object that contains all needed information.
    :return: List of unbounded sequences, each sequence is a list of transitions
    """

    def check_for_markings_larger_than_final_marking(graph, f_m):
        markings = []
        for node in graph.nodes:
            if all(np.greater_equal(graph.nodes[node]['marking'], f_m)):
                markings.append(node)
        return markings

    woflan_object.set_restricted_coverability_tree(
        restricted_coverability_tree(woflan_object.get_net(), woflan_object.get_initial_marking()))
    f_m = convert_marking(woflan_object.get_net(), woflan_object.get_final_marking())
    infinite_markings = []
    for node in woflan_object.get_restricted_coverability_tree().nodes:
        if np.inf in woflan_object.get_restricted_coverability_tree().nodes[node]['marking']:
            infinite_markings.append(node)
    larger_markings = check_for_markings_larger_than_final_marking(woflan_object.get_restricted_coverability_tree(),
                                                                   f_m)
    green_markings = []
    for node in woflan_object.get_restricted_coverability_tree().nodes:
        add_to_green = True
        for marking in infinite_markings:
            if nx_utils.has_path(woflan_object.get_restricted_coverability_tree(), node, marking):
                add_to_green = False
        for marking in larger_markings:
            if nx_utils.has_path(woflan_object.get_restricted_coverability_tree(), node, marking):
                add_to_green = False
        if add_to_green:
            green_markings.append(node)
    red_markings = []
    for node in woflan_object.get_restricted_coverability_tree().nodes:
        add_to_red = True
        for node_green in green_markings:
            if nx_utils.has_path(woflan_object.get_restricted_coverability_tree(), node, node_green):
                add_to_red = False
                break
        if add_to_red:
            red_markings.append(node)
    # Make the path as short as possible. If we reach a red state, we stop and do not go further in the "red zone".
    queue = set()
    queue.add(0)
    paths = {}
    paths[0] = []
    paths_to_red = []
    while len(queue) > 0:
        v = queue.pop()
        successors = woflan_object.get_restricted_coverability_tree().successors(v)
        for suc in successors:
            paths[suc] = paths[v].copy()
            paths[suc].append(woflan_object.get_restricted_coverability_tree().get_edge_data(v, suc)['transition'])
            if suc in red_markings:
                paths_to_red.append(paths[suc])
            else:
                queue.add(suc)
    return paths_to_red