File size: 7,494 Bytes
e60e568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
'''
    This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de).

    PM4Py is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    PM4Py is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with PM4Py.  If not, see <https://www.gnu.org/licenses/>.
'''
import importlib.util
import warnings
from enum import Enum
from typing import Optional, Dict, Any, Union

import numpy as np

from pm4py.algo.anonymization.trace_variant_query.util.util import generate_pm4py_log
from pm4py.objects.log.obj import EventLog
from pm4py.util import exec_utils

TRACE_START = "TRACE_START"
TRACE_END = "TRACE_END"
EVENT_DELIMETER = ">>>"


class Parameters(Enum):
    EPSILON = "epsilon"
    K = "k"
    P = "p"
    SHOW_PROGRESS_BAR = "show_progress_bar"


def apply(log: EventLog, parameters: Optional[Dict[Union[str, Parameters], Any]] = None) -> EventLog:
    """
    Variant Laplace is described in:
    Mannhardt, F., Koschmider, A., Baracaldo, N. et al. Privacy-Preserving Process Mining. Bus Inf Syst Eng 61,
    595–614 (2019). https://doi.org/10.1007/s12599-019-00613-3

    Parameters
    -------------
    log
        Event log
    parameters
        Parameters of the algorithm:
            -Parameters.EPSILON -> Strength of the differential privacy guarantee
            -Parameters.K -> Maximum prefix length of considered traces for the trace-variant-query
            -Parameters.P -> Pruning parameter of the trace-variant-query. Of a noisy trace variant, at least P traces
                            must appear. Otherwise, the trace variant and its traces won't be part of the result of the
                            trace variant query.
            -Parameters.SHOW_PROGRESS_BAR -> Enables/disables the progress bar (default: True)

    Returns
    ------------
    anonymized_trace_variant_distribution
        An anonymized trace variant distribution as an EventLog
    """

    if parameters is None:
        parameters = {}

    epsilon = exec_utils.get_param_value(Parameters.EPSILON, parameters, 1)
    k = exec_utils.get_param_value(Parameters.K, parameters, 0)
    p = exec_utils.get_param_value(Parameters.P, parameters, 1)

    if k == 0:
        warnings.warn(
            "k, the maximum prefix length of considered traces for the trace-variant-query, is set to 0, the trace-varaint-query will be empty.")
    if p == 1:
        warnings.warn("p, the pruning parameter, is set to 1, the trace-varaint-query might be very large.",
                      RuntimeWarning)

    show_progress_bar = exec_utils.get_param_value(Parameters.SHOW_PROGRESS_BAR, parameters, True)
    progress = None
    if importlib.util.find_loader("tqdm") and show_progress_bar:
        from tqdm.auto import tqdm
        progress = tqdm(total=k, desc="prefix tree construction, completed prefixes of length :: ")

    return privatize_tracevariants(log, epsilon, p, k, progress)


def privatize_tracevariants(log, epsilon, p, n, progress):
    # transform log into event view and get prefix frequencies
    event_int_mapping = create_event_int_mapping(log)
    known_prefix_frequencies = get_prefix_frequencies_from_log(log)
    events = list(event_int_mapping.keys())
    events.remove(TRACE_START)

    final_frequencies = {}
    trace_frequencies = {"": 0}
    for i in range(1, n + 1):
        # get prefix_frequencies, using either known frequency, or frequency of parent, or 0
        trace_frequencies = get_prefix_frequencies_length_n(trace_frequencies, events, i, known_prefix_frequencies)
        # laplace_mechanism
        trace_frequencies = apply_laplace_noise_tf(trace_frequencies, epsilon)

        # prune
        trace_frequencies = prune_trace_frequencies(trace_frequencies, p)
        # print(trace_frequencies)
        # add finished traces to output, remove from list, sanity checks
        new_frequencies = {}
        for entry in trace_frequencies.items():
            if TRACE_END in entry[0]:
                final_frequencies[entry[0]] = entry[1]
            else:
                new_frequencies[entry[0]] = entry[1]
        trace_frequencies = new_frequencies
        # print(trace_frequencies)
        if progress is not None:
            progress.update()
    if progress is not None:
        progress.close()
    del progress
    return generate_pm4py_log(final_frequencies)


def create_event_int_mapping(log):
    event_name_list = []
    for trace in log:
        for event in trace:
            event_name = event["concept:name"]
            if not str(event_name) in event_name_list:
                event_name_list.append(event_name)
    event_int_mapping = {}
    event_int_mapping[TRACE_START] = 0
    current_int = 1
    for event_name in event_name_list:
        event_int_mapping[event_name] = current_int
        current_int = current_int + 1
    event_int_mapping[TRACE_END] = current_int
    return event_int_mapping


def get_prefix_frequencies_from_log(log):
    prefix_frequencies = {}
    for trace in log:
        current_prefix = ""
        for event in trace:
            current_prefix = current_prefix + event["concept:name"] + EVENT_DELIMETER
            if current_prefix in prefix_frequencies:
                prefix_frequencies[current_prefix] += 1
            else:
                prefix_frequencies[current_prefix] = 1
        current_prefix = current_prefix + TRACE_END
        if current_prefix in prefix_frequencies:
            prefix_frequencies[current_prefix] += 1
        else:
            prefix_frequencies[current_prefix] = 1
    return prefix_frequencies


def get_prefix_frequencies_length_n(trace_frequencies, events, n, known_prefix_frequencies):
    prefixes_length_n = {}
    for prefix, frequency in trace_frequencies.items():
        for new_prefix in pref(prefix, events):
            if new_prefix in known_prefix_frequencies:
                new_frequency = known_prefix_frequencies[new_prefix]
                prefixes_length_n[new_prefix] = new_frequency
            else:
                prefixes_length_n[new_prefix] = 0
    return prefixes_length_n


def prune_trace_frequencies(trace_frequencies, P):
    pruned_frequencies = {}
    for entry in trace_frequencies.items():
        if entry[1] >= P:
            pruned_frequencies[entry[0]] = entry[1]
    return pruned_frequencies


def pref(prefix, events):
    prefixes_length_n = []
    if not TRACE_END in prefix:
        for event in events:
            if event == TRACE_END:
                current_prefix = prefix + event
            else:
                current_prefix = prefix + event + EVENT_DELIMETER
            prefixes_length_n.append(current_prefix)
    return prefixes_length_n


def apply_laplace_noise_tf(trace_frequencies, epsilon):
    scale = 1 / epsilon
    for trace_frequency in trace_frequencies:
        noise = int(np.random.laplace(0, scale))
        trace_frequencies[trace_frequency] = trace_frequencies[trace_frequency] + noise
        if trace_frequencies[trace_frequency] < 0:
            trace_frequencies[trace_frequency] = 0
    return trace_frequencies