File size: 6,562 Bytes
e60e568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
'''
    This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de).

    PM4Py is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    PM4Py is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with PM4Py.  If not, see <https://www.gnu.org/licenses/>.
'''
from pm4py.algo.conformance.tokenreplay import algorithm as tr_algorithm
from pm4py.util.colors import get_string_from_int_below_255
from collections import Counter
from copy import copy
import matplotlib as mpl
import matplotlib.cm as cm
import math
from typing import Optional, Dict, Any, Union
from pm4py.objects.log.obj import EventLog
from pm4py.objects.petri_net.obj import PetriNet, Marking
from pm4py.objects.conversion.log import converter as log_converter
import pandas as pd


def give_color_to_direction_dynamic(dir):
    """
    Assigns a color to the direction (dynamic-defined colors)

    Parameters
    --------------
    dir
        Direction

    Returns
    --------------
    col
        Color
    """
    dir = 0.5 + 0.5 * dir
    norm = mpl.colors.Normalize(vmin=0, vmax=1)
    nodes = [0.0, 0.01, 0.25, 0.4, 0.45, 0.55, 0.75, 0.99, 1.0]
    colors = ["deepskyblue", "skyblue", "lightcyan", "lightgray", "gray", "lightgray", "mistyrose", "salmon", "tomato"]
    cmap = mpl.colors.LinearSegmentedColormap.from_list("mycmap2", list(zip(nodes, colors)))
    #cmap = cm.plasma
    m = cm.ScalarMappable(norm=norm, cmap=cmap)
    rgba = m.to_rgba(dir)
    r = get_string_from_int_below_255(math.ceil(rgba[0] * 255.0))
    g = get_string_from_int_below_255(math.ceil(rgba[1] * 255.0))
    b = get_string_from_int_below_255(math.ceil(rgba[2] * 255.0))
    return "#" + r + g + b


def give_color_to_direction_static(dir):
    """
    Assigns a color to the direction (static-defined colors)

    Parameters
    --------------
    dir
        Direction

    Returns
    --------------
    col
        Color
    """
    direction_colors = [[-0.5, "#4444FF"], [-0.1, "#AAAAFF"], [0.0, "#CCCCCC"], [0.5, "#FFAAAA"], [1.0, "#FF4444"]]
    for col in direction_colors:
        if col[0] >= dir:
            return col[1]


def compare_element_usage_two_logs(net: PetriNet, im: Marking, fm: Marking, log1: Union[EventLog, pd.DataFrame], log2: Union[EventLog, pd.DataFrame], parameters: Optional[Dict[Any, Any]] = None) -> Dict[Any, Any]:
    """
    Returns some statistics (also visual) about the comparison of the usage
    of the elements in two logs given an accepting Petri net

    Parameters
    -------------
    net
        Petri net
    im
        Initial marking
    fm
        Final marking
    log1
        First log
    log2
        Second log
    parameters
        Parameters of the algorithm (to be passed to the token-based replay)

    Returns
    ----------------
    aggregated_statistics
        Statistics about the usage of places, transitions and arcs in the net
    """
    if parameters is None:
        parameters = {}

    log1 = log_converter.apply(log1, variant=log_converter.Variants.TO_EVENT_LOG, parameters=parameters)
    log2 = log_converter.apply(log2, variant=log_converter.Variants.TO_EVENT_LOG, parameters=parameters)

    tr_parameters = copy(parameters)
    tr_parameters[tr_algorithm.Variants.TOKEN_REPLAY.value.Parameters.ENABLE_PLTR_FITNESS] = True

    rep_traces1, pl_fit_trace1, tr_fit_trace1, ne_act_model1 = tr_algorithm.apply(log1, net, im, fm,
                                                                                  parameters=tr_parameters)
    rep_traces2, pl_fit_trace2, tr_fit_trace2, ne_act_model2 = tr_algorithm.apply(log2, net, im, fm,
                                                                                  parameters=tr_parameters)

    tr_occ1 = Counter([y for x in rep_traces1 for y in x["activated_transitions"]])
    tr_occ2 = Counter([y for x in rep_traces2 for y in x["activated_transitions"]])
    pl_occ1 = Counter({p: pl_fit_trace1[p]["c"] + pl_fit_trace1[p]["r"] for p in pl_fit_trace1})
    pl_occ2 = Counter({p: pl_fit_trace2[p]["c"] + pl_fit_trace2[p]["r"] for p in pl_fit_trace2})

    all_replayed_transitions = set(tr_occ1.keys()).union(set(tr_occ2.keys()))
    all_replayed_places = set(pl_occ1.keys()).union(set(pl_occ2.keys()))

    all_transitions = all_replayed_transitions.union(set(net.transitions))
    all_places = all_replayed_places.union(set(net.places))
    aggregated_statistics = {}
    for place in all_places:
        aggregated_statistics[place] = {"log1_occ": pl_occ1[place], "log2_occ": pl_occ2[place],
                                        "total_occ": pl_occ1[place] + pl_occ2[place]}
        aggregated_statistics[place]["label"] = "(%d/%d/%d)" % (
            pl_occ1[place], pl_occ2[place], pl_occ1[place] + pl_occ2[place])
        dir = (pl_occ2[place] - pl_occ1[place]) / (pl_occ1[place] + pl_occ2[place]) if (pl_occ1[place] + pl_occ2[
            place]) > 0 else 0
        aggregated_statistics[place]["direction"] = dir
        aggregated_statistics[place]["color"] = give_color_to_direction_dynamic(dir)

    for trans in all_transitions:
        aggregated_statistics[trans] = {"log1_occ": tr_occ1[trans], "log2_occ": tr_occ2[trans],
                                        "total_occ": tr_occ1[trans] + tr_occ2[trans]}
        if trans.label is not None:
            aggregated_statistics[trans]["label"] = trans.label+" "
        else:
            aggregated_statistics[trans]["label"] = ""
        aggregated_statistics[trans]["label"] = aggregated_statistics[trans]["label"] + "(%d/%d/%d)" % (
            tr_occ1[trans], tr_occ2[trans], tr_occ1[trans] + tr_occ2[trans])
        dir = (tr_occ2[trans] - tr_occ1[trans]) / (tr_occ1[trans] + tr_occ2[trans]) if (tr_occ1[trans] + tr_occ2[
            trans]) > 0 else 0
        aggregated_statistics[trans]["direction"] = dir
        aggregated_statistics[trans]["color"] = give_color_to_direction_dynamic(dir)
        for arc in trans.in_arcs:
            aggregated_statistics[arc] = aggregated_statistics[trans]
        for arc in trans.out_arcs:
            aggregated_statistics[arc] = aggregated_statistics[trans]

    return aggregated_statistics