File size: 1,958 Bytes
e60e568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
'''
    This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de).

    PM4Py is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    PM4Py is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with PM4Py.  If not, see <https://www.gnu.org/licenses/>.
'''
from pm4py.algo.conformance.alignments.decomposed.variants import recompos_maximal
from enum import Enum
from pm4py.util import exec_utils
from typing import Optional, Dict, Any, Union
from pm4py.objects.log.obj import EventLog
from pm4py.objects.petri_net.obj import PetriNet, Marking
from pm4py.util import typing
import pandas as pd


class Variants(Enum):
    RECOMPOS_MAXIMAL = recompos_maximal


VERSIONS = {Variants.RECOMPOS_MAXIMAL}


def apply(log: Union[EventLog, pd.DataFrame], net: PetriNet, im: Marking, fm: Marking, variant=Variants.RECOMPOS_MAXIMAL, parameters: Optional[Dict[Any, Any]] = None) -> typing.ListAlignments:
    """
    Apply the recomposition alignment approach
    to a log and a Petri net performing decomposition

    Parameters
    --------------
    log
        Event log
    net
        Petri net
    im
        Initial marking
    fm
        Final marking
    variant
        Variant of the algorithm, possible values:
            - Variants.RECOMPOS_MAXIMAL
    parameters
        Parameters of the algorithm

    Returns
    --------------
    aligned_traces
        For each trace, return its alignment
    """
    return exec_utils.get_variant(variant).apply(log, net, im, fm, parameters=parameters)