File size: 18,000 Bytes
e60e568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
'''
    This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de).

    PM4Py is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    PM4Py is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with PM4Py.  If not, see <https://www.gnu.org/licenses/>.
'''

from enum import Enum
from pm4py.objects.log.obj import EventLog
import pandas as pd
from typing import Union, Dict, Optional, Any, List
from pm4py.algo.discovery.declare.templates import *
from pm4py.util import exec_utils, constants, xes_constants, pandas_utils
from collections import Counter


class Parameters(Enum):
    CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY
    ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY


def __check_existence(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], trace_dict: Dict[str, List[Any]],
                      parameters: Optional[Dict[Any, Any]] = None):
    if EXISTENCE in model:
        for act in model[EXISTENCE]:
            if act not in trace:
                trace_dict["deviations"].append([EXISTENCE, act])


def __check_absence(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], trace_dict: Dict[str, List[Any]],
                    parameters: Optional[Dict[Any, Any]] = None):
    if ABSENCE in model:
        for act in model[ABSENCE]:
            if act in trace:
                trace_dict["deviations"].append([ABSENCE, act])


def __check_exactly_one(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], trace_dict: Dict[str, List[Any]],
                        parameters: Optional[Dict[Any, Any]] = None):
    if EXACTLY_ONE in model:
        trace_counter = Counter(trace)
        for act in model[EXACTLY_ONE]:
            if trace_counter[act] != 1:
                trace_dict["deviations"].append([EXACTLY_ONE, act])


def __check_init(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], trace_dict: Dict[str, List[Any]],
                 parameters: Optional[Dict[Any, Any]] = None):
    if INIT in model:
        for act in model[INIT]:
            if len(trace) == 0 or trace[0] != act:
                trace_dict["deviations"].append([INIT, act])


def __check_responded_existence(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]],
                                trace_dict: Dict[str, List[Any]], parameters: Optional[Dict[Any, Any]] = None):
    if RESPONDED_EXISTENCE in model:
        for act_couple in model[RESPONDED_EXISTENCE]:
            if act_couple[0] in trace and act_couple[1] not in trace:
                trace_dict["deviations"].append([RESPONDED_EXISTENCE, act_couple])


def __check_coexistence(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], trace_dict: Dict[str, List[Any]],
                        parameters: Optional[Dict[Any, Any]] = None):
    if COEXISTENCE in model:
        for act_couple in model[COEXISTENCE]:
            if (act_couple[0] in trace and act_couple[1] not in trace) or (
                    act_couple[1] in trace and act_couple[0] not in trace):
                trace_dict["deviations"].append([COEXISTENCE, act_couple])


def __check_non_coexistence(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]],
                            trace_dict: Dict[str, List[Any]], parameters: Optional[Dict[Any, Any]] = None):
    if NONCOEXISTENCE in model:
        for act_couple in model[NONCOEXISTENCE]:
            if act_couple[0] in trace and act_couple[1] in trace:
                trace_dict["deviations"].append([NONCOEXISTENCE, act_couple])


def __check_response(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], trace_dict: Dict[str, List[Any]],
                     act_idxs: Dict[str, List[int]], parameters: Optional[Dict[Any, Any]] = None):
    if RESPONSE in model:
        for act_couple in model[RESPONSE]:
            if act_couple[0] in trace:
                if (not act_couple[1] in trace) or max(act_idxs[act_couple[0]]) > max(act_idxs[act_couple[1]]):
                    trace_dict["deviations"].append([RESPONSE, act_couple])


def __check_precedence(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], trace_dict: Dict[str, List[Any]],
                       act_idxs: Dict[str, List[int]], parameters: Optional[Dict[Any, Any]] = None):
    if PRECEDENCE in model:
        for act_couple in model[PRECEDENCE]:
            if act_couple[1] in trace:
                if (not act_couple[0] in trace) or min(act_idxs[act_couple[0]]) > min(act_idxs[act_couple[1]]):
                    trace_dict["deviations"].append([PRECEDENCE, act_couple])


def __check_succession(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], trace_dict: Dict[str, List[Any]],
                       act_idxs: Dict[str, List[int]], parameters: Optional[Dict[Any, Any]] = None):
    if SUCCESSION in model:
        for act_couple in model[SUCCESSION]:
            if (not act_couple[0] in trace or not act_couple[1] in trace) or min(act_idxs[act_couple[0]]) > min(
                    act_idxs[act_couple[1]]) or max(act_idxs[act_couple[0]]) > max(act_idxs[act_couple[1]]):
                trace_dict["deviations"].append([SUCCESSION, act_couple])


def __check_alt_response(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]],
                         trace_dict: Dict[str, List[Any]], act_idxs: Dict[str, List[int]],
                         parameters: Optional[Dict[Any, Any]] = None):
    if ALTRESPONSE in model:
        for act_couple in model[RESPONSE]:
            spec_idxs = []
            if act_couple[0] in trace:
                spec_idxs = spec_idxs + [(act_couple[0], i) for i in act_idxs[act_couple[0]]]
            if act_couple[1] in trace:
                spec_idxs = spec_idxs + [(act_couple[1], i) for i in act_idxs[act_couple[1]]]
            spec_idxs = sorted(spec_idxs, key=lambda x: (x[1], x[0]))
            while spec_idxs:
                if spec_idxs[0][0] != act_couple[0]:
                    del spec_idxs[0]
                else:
                    break
            is_ok = True
            for i in range(len(spec_idxs)):
                if i % 2 == 0 and (spec_idxs[i][0] != act_couple[0] or i == len(spec_idxs) - 1 or spec_idxs[i + 1][0] !=
                                   act_couple[1]):
                    is_ok = False
                    break
            if not is_ok:
                trace_dict["deviations"].append([ALTRESPONSE, act_couple])


def __check_chain_response(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]],
                           trace_dict: Dict[str, List[Any]], act_idxs: Dict[str, List[int]],
                           parameters: Optional[Dict[Any, Any]] = None):
    if CHAINRESPONSE in model:
        for act_couple in model[CHAINRESPONSE]:
            spec_idxs = []
            if act_couple[0] in trace:
                spec_idxs = spec_idxs + [(act_couple[0], i) for i in act_idxs[act_couple[0]]]
            if act_couple[1] in trace:
                spec_idxs = spec_idxs + [(act_couple[1], i) for i in act_idxs[act_couple[1]]]
            spec_idxs = sorted(spec_idxs, key=lambda x: (x[1], x[0]))
            while spec_idxs:
                if spec_idxs[0][0] != act_couple[0]:
                    del spec_idxs[0]
                else:
                    break
            is_ok = True
            for i in range(len(spec_idxs)):
                if i % 2 == 0 and (spec_idxs[i][0] != act_couple[0] or i == len(spec_idxs) - 1 or spec_idxs[i + 1][0] !=
                                   act_couple[1] or spec_idxs[i + 1][1] != spec_idxs[i][1] + 1):
                    is_ok = False
                    break
            if not is_ok:
                trace_dict["deviations"].append([CHAINRESPONSE, act_couple])


def __check_alt_precedence(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]],
                           trace_dict: Dict[str, List[Any]], act_idxs: Dict[str, List[int]],
                           parameters: Optional[Dict[Any, Any]] = None):
    if ALTPRECEDENCE in model:
        for act_couple in model[ALTPRECEDENCE]:
            spec_idxs = []
            if act_couple[0] in trace:
                spec_idxs = spec_idxs + [(act_couple[0], i) for i in act_idxs[act_couple[0]]]
            if act_couple[1] in trace:
                spec_idxs = spec_idxs + [(act_couple[1], i) for i in act_idxs[act_couple[1]]]
            spec_idxs = sorted(spec_idxs, key=lambda x: (x[1], x[0]))
            while len(spec_idxs) > 1:
                if spec_idxs[1][0] != act_couple[1]:
                    del spec_idxs[0]
                else:
                    break
            is_ok = True
            for i in range(len(spec_idxs)):
                if i % 2 == 0 and (spec_idxs[i][0] != act_couple[0] or i == len(spec_idxs) - 1 or spec_idxs[i + 1][0] !=
                                   act_couple[1]):
                    is_ok = False
                    break
            if not is_ok:
                trace_dict["deviations"].append([ALTPRECEDENCE, act_couple])


def __check_chain_precedence(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]],
                             trace_dict: Dict[str, List[Any]], act_idxs: Dict[str, List[int]],
                             parameters: Optional[Dict[Any, Any]] = None):
    if CHAINPRECEDENCE in model:
        for act_couple in model[CHAINPRECEDENCE]:
            spec_idxs = []
            if act_couple[0] in trace:
                spec_idxs = spec_idxs + [(act_couple[0], i) for i in act_idxs[act_couple[0]]]
            if act_couple[1] in trace:
                spec_idxs = spec_idxs + [(act_couple[1], i) for i in act_idxs[act_couple[1]]]
            spec_idxs = sorted(spec_idxs, key=lambda x: (x[1], x[0]))
            while len(spec_idxs) > 1:
                if spec_idxs[1][0] != act_couple[1]:
                    del spec_idxs[0]
                else:
                    break
            is_ok = True
            for i in range(len(spec_idxs)):
                if i % 2 == 0 and (spec_idxs[i][0] != act_couple[0] or i == len(spec_idxs) - 1 or spec_idxs[i + 1][0] !=
                                   act_couple[1] or spec_idxs[i + 1][1] != spec_idxs[i][1] + 1):
                    is_ok = False
                    break
            if not is_ok:
                trace_dict["deviations"].append([CHAINPRECEDENCE, act_couple])


def __check_alt_succession(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]],
                           trace_dict: Dict[str, List[Any]], act_idxs: Dict[str, List[int]],
                           parameters: Optional[Dict[Any, Any]] = None):
    if ALTSUCCESSION in model:
        for act_couple in model[ALTSUCCESSION]:
            spec_idxs = []
            if act_couple[0] in trace:
                spec_idxs = spec_idxs + [(act_couple[0], i) for i in act_idxs[act_couple[0]]]
            if act_couple[1] in trace:
                spec_idxs = spec_idxs + [(act_couple[1], i) for i in act_idxs[act_couple[1]]]
            spec_idxs = sorted(spec_idxs, key=lambda x: (x[1], x[0]))
            is_ok = True
            for i in range(len(spec_idxs)):
                if i % 2 == 0 and (spec_idxs[i][0] != act_couple[0] or i == len(spec_idxs) - 1 or spec_idxs[i + 1][0] !=
                                   act_couple[1]):
                    is_ok = False
                    break
            if not is_ok:
                trace_dict["deviations"].append([ALTSUCCESSION, act_couple])


def __check_chain_succession(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]],
                             trace_dict: Dict[str, List[Any]], act_idxs: Dict[str, List[int]],
                             parameters: Optional[Dict[Any, Any]] = None):
    if CHAINSUCCESSION in model:
        for act_couple in model[CHAINSUCCESSION]:
            spec_idxs = []
            if act_couple[0] in trace:
                spec_idxs = spec_idxs + [(act_couple[0], i) for i in act_idxs[act_couple[0]]]
            if act_couple[1] in trace:
                spec_idxs = spec_idxs + [(act_couple[1], i) for i in act_idxs[act_couple[1]]]
            spec_idxs = sorted(spec_idxs, key=lambda x: (x[1], x[0]))
            is_ok = True
            for i in range(len(spec_idxs)):
                if i % 2 == 0 and (spec_idxs[i][0] != act_couple[0] or i == len(spec_idxs) - 1 or spec_idxs[i + 1][0] !=
                                   act_couple[1] or spec_idxs[i + 1][1] != spec_idxs[i][1] + 1):
                    is_ok = False
                    break
            if not is_ok:
                trace_dict["deviations"].append([CHAINSUCCESSION, act_couple])


def apply_list(projected_log: List[List[str]], model: Dict[str, Dict[Any, Dict[str, int]]],
               parameters: Optional[Dict[Any, Any]] = None) -> List[Dict[str, Any]]:
    if parameters is None:
        parameters = {}

    conf_cases = []

    total_num_constraints = 0
    for k in model:
        total_num_constraints += len(model[k])

    for trace in projected_log:
        act_idxs = {}
        for i in range(len(trace)):
            if trace[i] not in act_idxs:
                act_idxs[trace[i]] = []
            act_idxs[trace[i]].append(i)

        ret = {}
        ret["no_constr_total"] = total_num_constraints
        ret["deviations"] = []

        __check_existence(trace, model, ret, parameters)
        __check_exactly_one(trace, model, ret, parameters)
        __check_init(trace, model, ret, parameters)
        __check_responded_existence(trace, model, ret, parameters)
        __check_coexistence(trace, model, ret, parameters)
        __check_non_coexistence(trace, model, ret, parameters)
        __check_response(trace, model, ret, act_idxs, parameters)
        __check_precedence(trace, model, ret, act_idxs, parameters)
        __check_succession(trace, model, ret, act_idxs, parameters)
        __check_alt_response(trace, model, ret, act_idxs, parameters)
        __check_chain_response(trace, model, ret, act_idxs, parameters)
        __check_alt_precedence(trace, model, ret, act_idxs, parameters)
        __check_chain_precedence(trace, model, ret, act_idxs, parameters)
        __check_alt_succession(trace, model, ret, act_idxs, parameters)
        __check_chain_succession(trace, model, ret, act_idxs, parameters)
        __check_absence(trace, model, ret, parameters)
        __check_non_coexistence(trace, model, ret, parameters)

        ret["no_dev_total"] = len(ret["deviations"])
        ret["dev_fitness"] = 1.0 - ret["no_dev_total"] / ret["no_constr_total"] if ret["no_constr_total"] > 0 else 1.0
        ret["is_fit"] = ret["no_dev_total"] == 0

        conf_cases.append(ret)

    return conf_cases


def apply(log: Union[EventLog, pd.DataFrame], model: Dict[str, Dict[Any, Dict[str, int]]],
          parameters: Optional[Dict[Any, Any]] = None) -> List[Dict[str, Any]]:
    """
    Applies conformance checking against a DECLARE model.

    Paper:
    F. M. Maggi, A. J. Mooij and W. M. P. van der Aalst, "User-guided discovery of declarative process models," 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), Paris, France, 2011, pp. 192-199, doi: 10.1109/CIDM.2011.5949297.

    Parameters
    --------------
    log
        Event log / Pandas dataframe
    model
        DECLARE model
    parameters
        Possible parameters of the algorithm, including:
        - Parameters.ACTIVITY_KEY => the attribute to be used as activity
        - Parameters.CASE_ID_KEY => the attribute to be used as case identifier

    Returns
    -------------
    lst_conf_res
        List containing for every case a dictionary with different keys:
        - no_constr_total => the total number of constraints of the DECLARE model
        - deviations => a list of deviations
        - no_dev_total => the total number of deviations
        - dev_fitness => the fitness (1 - no_dev_total / no_constr_total)
        - is_fit => True if the case is perfectly fit
    """
    if parameters is None:
        parameters = {}

    activity_key = exec_utils.get_param_value(Parameters.ACTIVITY_KEY, parameters, xes_constants.DEFAULT_NAME_KEY)
    case_id_key = exec_utils.get_param_value(Parameters.CASE_ID_KEY, parameters, constants.CASE_CONCEPT_NAME)

    import pm4py

    projected_log = pm4py.project_on_event_attribute(log, activity_key, case_id_key=case_id_key)

    ret = apply_list(projected_log, model, parameters=parameters)

    return ret


def get_diagnostics_dataframe(log, conf_result, parameters=None) -> pd.DataFrame:
    """
    Gets the diagnostics dataframe from a log and the results
    of DECLARE-based conformance checking

    Parameters
    --------------
    log
        Event log
    conf_result
        Results of conformance checking

    Returns
    --------------
    diagn_dataframe
        Diagnostics dataframe
    """
    if parameters is None:
        parameters = {}

    case_id_key = exec_utils.get_param_value(Parameters.CASE_ID_KEY, parameters, xes_constants.DEFAULT_TRACEID_KEY)

    import pandas as pd

    diagn_stream = []

    for index in range(len(log)):
        case_id = log[index].attributes[case_id_key]

        no_dev_total = conf_result[index]["no_dev_total"]
        no_constr_total = conf_result[index]["no_constr_total"]
        dev_fitness = conf_result[index]["dev_fitness"]

        diagn_stream.append({"case_id": case_id, "no_dev_total": no_dev_total, "no_constr_total": no_constr_total,
                             "dev_fitness": dev_fitness})

    return pandas_utils.instantiate_dataframe(diagn_stream)