Spaces:
Running
Running
File size: 3,924 Bytes
e60e568 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
'''
This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de).
PM4Py is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
PM4Py is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PM4Py. If not, see <https://www.gnu.org/licenses/>.
'''
from pm4py.algo.conformance.log_skeleton.variants import classic
from enum import Enum
from pm4py.util import exec_utils
from typing import Optional, Dict, Any, Union, List, Set
from pm4py.objects.log.obj import EventLog, Trace
import pandas as pd
class Variants(Enum):
CLASSIC = classic
CLASSIC = Variants.CLASSIC
DEFAULT_VARIANT = Variants.CLASSIC
def apply(obj: Union[EventLog, Trace, pd.DataFrame], model: Dict[str, Any], variant=DEFAULT_VARIANT, parameters: Optional[Dict[Any, Any]] = None) -> List[Set[Any]]:
"""
Apply log-skeleton based conformance checking given an event log/trace
and a log-skeleton model
Parameters
--------------
obj
Object (event log/trace)
model
Log-skeleton model
variant
Variant of the algorithm, possible values: Variants.CLASSIC
parameters
Parameters of the algorithm, including:
- Parameters.ACTIVITY_KEY
- Parameters.CONSIDERED_CONSTRAINTS, among: equivalence, always_after, always_before, never_together, directly_follows, activ_freq
Returns
--------------
aligned_traces
Conformance checking results for each trace:
- Outputs.IS_FIT => boolean that tells if the trace is perfectly fit according to the model
- Outputs.DEV_FITNESS => deviation based fitness (between 0 and 1; the more the trace is near to 1 the more fit is)
- Outputs.DEVIATIONS => list of deviations in the model
"""
if parameters is None:
parameters = {}
if type(obj) is Trace:
return exec_utils.get_variant(variant).apply_trace(obj, model, parameters=parameters)
else:
return exec_utils.get_variant(variant).apply_log(obj, model, parameters=parameters)
def apply_from_variants_list(var_list: List[List[str]], model: Dict[str, Any], variant=DEFAULT_VARIANT, parameters: Optional[Dict[Any, Any]] = None) -> List[Set[Any]]:
"""
Performs conformance checking using the log skeleton,
applying it from a list of variants
Parameters
--------------
var_list
List of variants
model
Log skeleton model
variant
Variant of the algorithm, possible values: Variants.CLASSIC
parameters
Parameters
Returns
--------------
conformance_dictio
Dictionary containing, for each variant, the result
of log skeleton checking
"""
if parameters is None:
parameters = {}
return exec_utils.get_variant(variant).apply_from_variants_list(var_list, model, parameters=parameters)
def get_diagnostics_dataframe(log: EventLog, conf_result: List[Set[Any]], variant=DEFAULT_VARIANT, parameters: Optional[Dict[Any, Any]] = None) -> pd.DataFrame:
"""
Gets the diagnostics dataframe from a log and the results
of log skeleton-based conformance checking
Parameters
--------------
log
Event log
conf_result
Results of conformance checking
Returns
--------------
diagn_dataframe
Diagnostics dataframe
"""
if parameters is None:
parameters = {}
return exec_utils.get_variant(variant).get_diagnostics_dataframe(log, conf_result, parameters=parameters)
|