File size: 2,879 Bytes
e60e568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
'''
    This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de).

    PM4Py is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    PM4Py is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with PM4Py.  If not, see <https://www.gnu.org/licenses/>.
'''
from pm4py.algo.conformance.tokenreplay.variants import token_replay, backwards
from enum import Enum
from pm4py.util import exec_utils
from typing import Optional, Dict, Any, Union
from pm4py.objects.log.obj import EventLog, EventStream
import pandas as pd
from pm4py.objects.petri_net.obj import PetriNet, Marking
from pm4py.util import typing


class Variants(Enum):
    TOKEN_REPLAY = token_replay
    BACKWARDS = backwards

VERSIONS = {Variants.TOKEN_REPLAY, Variants.BACKWARDS}
DEFAULT_VARIANT = Variants.TOKEN_REPLAY


def apply(log: Union[EventLog, EventStream, pd.DataFrame], net: PetriNet, initial_marking: Marking, final_marking: Marking, parameters: Optional[Dict[Any, Any]] = None, variant=DEFAULT_VARIANT) -> typing.ListAlignments:
    """
    Method to apply token-based replay
    
    Parameters
    -----------
    log
        Log
    net
        Petri net
    initial_marking
        Initial marking
    final_marking
        Final marking
    parameters
        Parameters of the algorithm, including:
            Parameters.ACTIVITY_KEY -> Activity key
    variant
        Variant of the algorithm to use:
            - Variants.TOKEN_REPLAY
            - Variants.BACKWARDS
    """
    if parameters is None:
        parameters = {}
    return exec_utils.get_variant(variant).apply(log, net, initial_marking,
                             final_marking, parameters=parameters)


def get_diagnostics_dataframe(log: Union[EventLog, EventStream, pd.DataFrame], tbr_output: typing.ListAlignments, variant=DEFAULT_VARIANT, parameters: Optional[Dict[Any, Any]] = None) -> pd.DataFrame:
    """
    Gets the results of token-based replay in a dataframe

    Parameters
    --------------
    log
        Event log
    tbr_output
        Output of the token-based replay technique
    variant
        Variant of the algorithm to use:
            - Variants.TOKEN_REPLAY
            - Variants.BACKWARDS

    Returns
    --------------
    dataframe
        Diagnostics dataframe
    """
    if parameters is None:
        parameters = {}

    return exec_utils.get_variant(variant).get_diagnostics_dataframe(log, tbr_output, parameters=parameters)