Spaces:
Running
Running
File size: 10,703 Bytes
e60e568 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
'''
This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de).
PM4Py is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
PM4Py is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PM4Py. If not, see <https://www.gnu.org/licenses/>.
'''
from abc import ABC
from collections import Counter
from typing import List, Optional, Collection, Any, Tuple, Generic, Dict
from pm4py.util import nx_utils
from pm4py.algo.discovery.inductive.cuts.abc import Cut, T
from pm4py.algo.discovery.inductive.dtypes.im_dfg import InductiveDFG
from pm4py.algo.discovery.inductive.dtypes.im_ds import IMDataStructureUVCL, IMDataStructureDFG
from pm4py.objects.dfg import util as dfu
from pm4py.objects.dfg.obj import DFG
from pm4py.objects.process_tree.obj import Operator, ProcessTree
from pm4py.util.compression.dtypes import UVCL
class LoopCut(Cut[T], ABC, Generic[T]):
@classmethod
def operator(cls, parameters: Optional[Dict[str, Any]] = None) -> ProcessTree:
return ProcessTree(operator=Operator.LOOP)
@classmethod
def holds(cls, obj: T, parameters: Optional[Dict[str, Any]] = None) -> Optional[List[Collection[Any]]]:
"""
This method finds a loop cut in the dfg.
Implementation follows function LoopCut on page 190 of
"Robust Process Mining with Guarantees" by Sander J.J. Leemans (ISBN: 978-90-386-4257-4)
Basic Steps:
1. merge all start and end activities in one group ('do' group)
2. remove start/end activities from the dfg
3. detect connected components in (undirected representative) of the reduced graph
4. check if each component meets the start/end criteria of the loop cut definition (merge with the 'do' group if not)
5. return the cut if at least two groups remain
"""
dfg = obj.dfg
start_activities = set(dfg.start_activities.keys())
end_activities = set(dfg.end_activities.keys())
if len(dfg.graph) == 0:
return None
groups = [start_activities.union(end_activities)]
for c in cls._compute_connected_components(dfg, start_activities, end_activities):
groups.append(set(c.nodes))
groups = cls._exclude_sets_non_reachable_from_start(dfg, start_activities, end_activities, groups)
groups = cls._exclude_sets_no_reachable_from_end(dfg, start_activities, end_activities, groups)
groups = cls._check_start_completeness(dfg, start_activities, end_activities, groups)
groups = cls._check_end_completeness(dfg, start_activities, end_activities, groups)
groups = list(filter(lambda g: len(g) > 0, groups))
return groups if len(groups) > 1 else None
@classmethod
def _check_start_completeness(cls, dfg: DFG, start_activities: Collection[Any], end_activities: Collection[Any],
groups: List[Collection[Any]], parameters: Optional[Dict[str, Any]] = None) -> List[Collection[Any]]:
i = 1
while i < len(groups):
merge = False
for a in groups[i]:
if merge:
break
for (x, b) in dfg.graph:
if x == a and b in start_activities:
for s in start_activities:
if not (a, s) in dfg.graph:
merge = True
if merge:
groups[0] = set(groups[0]).union(groups[i])
del groups[i]
continue
i = i + 1
return groups
@classmethod
def _check_end_completeness(cls, dfg: DFG, start_activities: Collection[Any], end_activities: Collection[Any],
groups: List[Collection[Any]], parameters: Optional[Dict[str, Any]] = None) -> List[Collection[Any]]:
i = 1
while i < len(groups):
merge = False
for a in groups[i]:
if merge:
break
for (b, x) in dfg.graph:
if x == a and b in end_activities:
for e in end_activities:
if not (e, a) in dfg.graph:
merge = True
if merge:
groups[0] = set(groups[0]).union(groups[i])
del groups[i]
continue
i = i + 1
return groups
@classmethod
def _exclude_sets_non_reachable_from_start(cls, dfg: DFG, start_activities: Collection[Any],
end_activities: Collection[Any],
groups: List[Collection[Any]], parameters: Optional[Dict[str, Any]] = None) -> List[Collection[Any]]:
for a in set(start_activities).difference(set(end_activities)):
for (x, b) in dfg.graph:
if x == a:
group_a, group_b = None, None
for group in groups:
group_a = group if a in group else group_a
group_b = group if b in group else group_b
groups = [group for group in groups if group != group_a and group != group_b]
# we are always merging on the do-part
groups.insert(0, group_a.union(group_b))
return groups
@classmethod
def _exclude_sets_no_reachable_from_end(cls, dfg: DFG, start_activities: Collection[Any],
end_activities: Collection[Any],
groups: List[Collection[Any]], parameters: Optional[Dict[str, Any]] = None) -> List[Collection[Any]]:
for b in set(end_activities).difference(start_activities):
for (a, x) in dfg.graph:
if x == b:
group_a, group_b = None, None
for group in groups:
group_a = group if a in group else group_a
group_b = group if b in group else group_b
groups = [group for group in groups if group != group_a and group != group_b]
groups.insert(0, group_a.union(group_b))
return groups
@classmethod
def _compute_connected_components(cls, dfg: DFG, start_activities: Collection[Any],
end_activities: Collection[Any], parameters: Optional[Dict[str, Any]] = None):
nxd = dfu.as_nx_graph(dfg)
[nxd.remove_edge(a, b) for (a, b) in dfg.graph if
a in start_activities or a in end_activities or b in start_activities or b in end_activities]
[nxd.remove_node(a) for a in start_activities if nxd.has_node(a)]
[nxd.remove_node(a) for a in end_activities if nxd.has_node(a)]
nxu = nxd.to_undirected()
return [nxd.subgraph(c).copy() for c in nx_utils.connected_components(nxu)]
class LoopCutUVCL(LoopCut[IMDataStructureUVCL]):
@classmethod
def project(cls, obj: IMDataStructureUVCL, groups: List[Collection[Any]], parameters: Optional[Dict[str, Any]] = None) -> List[IMDataStructureUVCL]:
do = groups[0]
redo = groups[1:]
redo_activities = [y for x in redo for y in x]
do_log = Counter()
redo_logs = [Counter() for i in range(len(redo))]
for t in obj.data_structure:
do_trace = tuple()
redo_trace = tuple()
for e in t:
if e in do:
do_trace = do_trace + (e,)
if len(redo_trace) > 0:
redo_logs = cls._append_trace_to_redo_log(redo_trace, redo_logs, redo, obj.data_structure[t])
redo_trace = tuple()
else:
if e in redo_activities:
redo_trace = redo_trace + (e,)
if len(do_trace) > 0:
do_log.update({do_trace: obj.data_structure[t]})
do_trace = tuple()
if len(redo_trace) > 0:
redo_logs = cls._append_trace_to_redo_log(redo_trace, redo_logs, redo)
do_log.update({do_trace: obj.data_structure[t]})
logs = [do_log]
logs.extend(redo_logs)
return list(map(lambda l: IMDataStructureUVCL(l), logs))
@classmethod
def _append_trace_to_redo_log(cls, redo_trace: Tuple, redo_logs: List[UVCL], redo_groups: List[Collection[Any]],
cardinality, parameters: Optional[Dict[str, Any]] = None) -> \
List[UVCL]:
activities = set(x for x in redo_trace)
inte = [(i, len(activities.intersection(redo_groups[i]))) for i in range(len(redo_groups))]
inte = sorted(inte, key=lambda x: (x[1], x[0]), reverse=True)
redo_logs[inte[0][0]].update({redo_trace: cardinality})
return redo_logs
class LoopCutDFG(LoopCut[IMDataStructureDFG]):
@classmethod
def project(cls, obj: IMDataStructureUVCL, groups: List[Collection[Any]], parameters: Optional[Dict[str, Any]] = None) -> List[IMDataStructureDFG]:
dfg = obj.dfg
dfgs = []
skippable = [False, False]
for gind, g in enumerate(groups):
dfn = DFG()
for (a, b) in dfg.graph:
if a in g and b in g:
dfn.graph[(a, b)] = dfg.graph[(a, b)]
if b in dfg.start_activities and a in dfg.end_activities:
skippable[1] = True
if gind == 0:
for a in dfg.start_activities:
if a in g:
dfn.start_activities[a] = dfg.start_activities[a]
else:
skippable[0] = True
for a in dfg.end_activities:
if a in g:
dfn.end_activities[a] = dfg.end_activities[a]
else:
skippable[1] = True
elif gind == 1:
for a in g:
dfn.start_activities[a] = 1
dfn.end_activities[a] = 1
dfgs.append(dfn)
return [IMDataStructureDFG(InductiveDFG(dfg=dfgs[i], skip=skippable[i])) for i in range(len(dfgs))]
|