Spaces:
Running
Running
File size: 4,709 Bytes
e60e568 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
'''
This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de).
PM4Py is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
PM4Py is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PM4Py. If not, see <https://www.gnu.org/licenses/>.
'''
from pm4py.algo.conformance.tokenreplay.variants import token_replay
from pm4py.algo.evaluation.generalization.variants import token_based as generalization_token_based
from pm4py.algo.evaluation.precision.variants import etconformance_token as precision_token_based
from pm4py.algo.evaluation.replay_fitness.variants import token_replay as fitness_token_based
from pm4py.algo.evaluation.simplicity.variants import arc_degree as simplicity_arc_degree
from pm4py.objects import log as log_lib
from pm4py.objects.conversion.log import converter as log_conversion
from pm4py.util import constants
from enum import Enum
from pm4py.util import exec_utils
from typing import Optional, Dict, Any, Union
from pm4py.objects.log.obj import EventLog
from pm4py.objects.petri_net.obj import PetriNet, Marking
import pandas as pd
class Parameters(Enum):
ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY
PARAM_FITNESS_WEIGHT = 'fitness_weight'
PARAM_PRECISION_WEIGHT = 'precision_weight'
PARAM_SIMPLICITY_WEIGHT = 'simplicity_weight'
PARAM_GENERALIZATION_WEIGHT = 'generalization_weight'
def apply(log: Union[EventLog, pd.DataFrame], net: PetriNet, initial_marking: Marking, final_marking: Marking, parameters: Optional[Dict[Union[str, Parameters], Any]] = None) -> Dict[str, float]:
"""
Calculates all metrics based on token-based replay and returns a unified dictionary
Parameters
-----------
log
Log
net
Petri net
initial_marking
Initial marking
final_marking
Final marking
parameters
Parameters
Returns
-----------
dictionary
Dictionary containing fitness, precision, generalization and simplicity; along with the average weight of
these metrics
"""
if parameters is None:
parameters = {}
log = log_conversion.apply(log, parameters, log_conversion.TO_EVENT_LOG)
activity_key = exec_utils.get_param_value(Parameters.ACTIVITY_KEY, parameters, log_lib.util.xes.DEFAULT_NAME_KEY)
fitness_weight = exec_utils.get_param_value(Parameters.PARAM_FITNESS_WEIGHT, parameters, 0.25)
precision_weight = exec_utils.get_param_value(Parameters.PARAM_PRECISION_WEIGHT, parameters, 0.25)
simplicity_weight = exec_utils.get_param_value(Parameters.PARAM_SIMPLICITY_WEIGHT, parameters, 0.25)
generalization_weight = exec_utils.get_param_value(Parameters.PARAM_GENERALIZATION_WEIGHT, parameters, 0.25)
sum_of_weights = (fitness_weight + precision_weight + simplicity_weight + generalization_weight)
fitness_weight = fitness_weight / sum_of_weights
precision_weight = precision_weight / sum_of_weights
simplicity_weight = simplicity_weight / sum_of_weights
generalization_weight = generalization_weight / sum_of_weights
parameters_tr = {token_replay.Parameters.ACTIVITY_KEY: activity_key}
aligned_traces = token_replay.apply(log, net, initial_marking, final_marking, parameters=parameters_tr)
parameters = {
token_replay.Parameters.ACTIVITY_KEY: activity_key
}
fitness = fitness_token_based.evaluate(aligned_traces)
precision = precision_token_based.apply(log, net, initial_marking, final_marking, parameters=parameters)
generalization = generalization_token_based.get_generalization(net, aligned_traces)
simplicity = simplicity_arc_degree.apply(net)
metrics_average_weight = fitness_weight * fitness["log_fitness"] + precision_weight * precision \
+ generalization_weight * generalization + simplicity_weight * simplicity
fscore = 0.0
if (fitness['log_fitness'] + precision) > 0:
fscore = (2*fitness['log_fitness']*precision)/(fitness['log_fitness']+precision)
dictionary = {
"fitness": fitness,
"precision": precision,
"generalization": generalization,
"simplicity": simplicity,
"metricsAverageWeight": metrics_average_weight,
"fscore": fscore
}
return dictionary
|