File size: 5,368 Bytes
e60e568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
'''
    This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de).

    PM4Py is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    PM4Py is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with PM4Py.  If not, see <https://www.gnu.org/licenses/>.
'''
from collections import Counter
from pm4py.objects.log.obj import EventLog, Event, Trace
from pm4py.util import xes_constants as xes_util
import heapq
from pm4py.objects.petri_net.utils.petri_utils import decorate_places_preset_trans, decorate_transitions_prepostset
from pm4py.objects.petri_net.utils import align_utils as utils
from pm4py.objects.petri_net.utils.incidence_matrix import construct
from pm4py.util import constants, pandas_utils
import pandas as pd


def __search(sync_net, ini, fin, stop, cost_function, skip):
    decorate_transitions_prepostset(sync_net)
    decorate_places_preset_trans(sync_net)

    incidence_matrix = construct(sync_net)
    ini_vec, fin_vec, cost_vec = utils.__vectorize_initial_final_cost(incidence_matrix, ini, fin, cost_function)

    closed = set()

    ini_state = utils.SearchTuple(0, 0, 0, ini, None, None, None, True)
    open_set = [ini_state]
    heapq.heapify(open_set)
    visited = 0
    queued = 0
    traversed = 0

    # return all the prefix markings of the optimal alignments as set
    ret_markings = None
    # keep track of the optimal cost of an alignment (to trim search when needed)
    optimal_cost = None

    while not len(open_set) == 0:
        curr = heapq.heappop(open_set)

        current_marking = curr.m

        # trim alignments when we already reached an optimal alignment and the
        # current cost is greater than the optimal cost
        if optimal_cost is not None and curr.f > optimal_cost:
            break

        already_closed = current_marking in closed
        if already_closed:
            continue

        if stop <= current_marking:
            # add the current marking to the set
            # of returned markings
            if ret_markings is None:
                ret_markings = set()
            ret_markings.add(current_marking)
            # close the marking
            closed.add(current_marking)
            # set the optimal cost
            optimal_cost = curr.f

            continue

        closed.add(current_marking)
        visited += 1

        enabled_trans = set()
        for p in current_marking:
            for t in p.ass_trans:
                if t.sub_marking <= current_marking:
                    enabled_trans.add(t)

        trans_to_visit_with_cost = [(t, cost_function[t]) for t in enabled_trans if
                                    not (t is None or utils.__is_log_move(t, skip) or (
                                            utils.__is_model_move(t, skip) and not t.label[1] is None))]

        for t, cost in trans_to_visit_with_cost:
            traversed += 1
            new_marking = utils.add_markings(current_marking, t.add_marking)

            if new_marking in closed:
                continue
            g = curr.g + cost

            queued += 1
            new_f = g

            tp = utils.SearchTuple(new_f, g, 0, new_marking, curr, t, None, True)
            heapq.heappush(open_set, tp)

    return ret_markings


def get_log_prefixes(log, activity_key=xes_util.DEFAULT_NAME_KEY, case_id_key=constants.CASE_CONCEPT_NAME):
    """
    Get log prefixes

    Parameters
    ----------
    log
        Trace log
    activity_key
        Activity key (must be provided if different from concept:name)
    """
    prefixes = {}
    prefix_count = Counter()

    if pandas_utils.check_is_pandas_dataframe(log):
        traces = [tuple(x) for x in log.groupby(case_id_key)[activity_key].agg(list).to_dict().values()]
    else:
        traces = [tuple(x[activity_key] for x in trace) for trace in log]

    for trace in traces:
        for i in range(1, len(trace)):
            prefix = constants.DEFAULT_VARIANT_SEP.join(trace[0:i])
            next_activity = trace[i]
            if prefix not in prefixes:
                prefixes[prefix] = set()
            prefixes[prefix].add(next_activity)
            prefix_count[prefix] += 1

    return prefixes, prefix_count


def form_fake_log(prefixes_keys, activity_key=xes_util.DEFAULT_NAME_KEY):
    """
    Form fake log for replay (putting each prefix as separate trace to align)

    Parameters
    ----------
    prefixes_keys
        Keys of the prefixes (to form a log with a given order)
    activity_key
        Activity key (must be provided if different from concept:name)
    """
    fake_log = EventLog()
    for prefix in prefixes_keys:
        trace = Trace()
        prefix_activities = prefix.split(constants.DEFAULT_VARIANT_SEP)
        for activity in prefix_activities:
            event = Event()
            event[activity_key] = activity
            trace.append(event)
        fake_log.append(trace)
    return fake_log