File size: 13,464 Bytes
e60e568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
'''
    This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de).

    PM4Py is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    PM4Py is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with PM4Py.  If not, see <https://www.gnu.org/licenses/>.
'''
from pm4py.objects import log as log_lib
from pm4py.algo.evaluation.precision import utils as precision_utils
from pm4py.objects.petri_net.utils import align_utils as utils, check_soundness
from pm4py.objects.petri_net.utils.petri_utils import construct_trace_net
from pm4py.objects.petri_net.utils.synchronous_product import construct
from pm4py.statistics.start_activities.log.get import get_start_activities
from pm4py.objects.petri_net.utils.align_utils import get_visible_transitions_eventually_enabled_by_marking
from pm4py.util import exec_utils
from pm4py.util import xes_constants
import importlib.util
from enum import Enum
from pm4py.util import constants
from typing import Optional, Dict, Any, Union
from pm4py.objects.log.obj import EventLog, EventStream
from pm4py.objects.petri_net.obj import PetriNet, Marking
from pm4py.objects.conversion.log import converter as log_converter
import pandas as pd


class Parameters(Enum):
    ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY
    CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY
    TOKEN_REPLAY_VARIANT = "token_replay_variant"
    CLEANING_TOKEN_FLOOD = "cleaning_token_flood"
    SHOW_PROGRESS_BAR = "show_progress_bar"
    MULTIPROCESSING = "multiprocessing"
    CORES = "cores"


def apply(log: Union[EventLog, EventStream, pd.DataFrame], net: PetriNet, marking: Marking, final_marking: Marking, parameters: Optional[Dict[Union[str, Parameters], Any]] = None) -> float:
    """
    Get Align-ET Conformance precision

    Parameters
    ----------
    log
        Trace log
    net
        Petri net
    marking
        Initial marking
    final_marking
        Final marking
    parameters
        Parameters of the algorithm, including:
            Parameters.ACTIVITY_KEY -> Activity key
    """

    if parameters is None:
        parameters = {}

    debug_level = parameters["debug_level"] if "debug_level" in parameters else 0

    activity_key = exec_utils.get_param_value(Parameters.ACTIVITY_KEY, parameters, log_lib.util.xes.DEFAULT_NAME_KEY)
    case_id_key = exec_utils.get_param_value(Parameters.CASE_ID_KEY, parameters, constants.CASE_CONCEPT_NAME)

    # default value for precision, when no activated transitions (not even by looking at the initial marking) are found
    precision = 1.0
    sum_ee = 0
    sum_at = 0
    unfit = 0

    if not check_soundness.check_easy_soundness_net_in_fin_marking(net, marking, final_marking):
        raise Exception("trying to apply Align-ETConformance on a Petri net that is not a easy sound net!!")

    if type(log) is not pd.DataFrame:
        log = log_converter.apply(log, variant=log_converter.Variants.TO_EVENT_LOG, parameters=parameters)

    prefixes, prefix_count = precision_utils.get_log_prefixes(log, activity_key=activity_key, case_id_key=case_id_key)
    prefixes_keys = list(prefixes.keys())
    fake_log = precision_utils.form_fake_log(prefixes_keys, activity_key=activity_key)

    align_stop_marking = align_fake_log_stop_marking(fake_log, net, marking, final_marking, parameters=parameters)
    all_markings = transform_markings_from_sync_to_original_net(align_stop_marking, net, parameters=parameters)

    for i in range(len(prefixes)):
        markings = all_markings[i]

        if markings is not None:
            log_transitions = set(prefixes[prefixes_keys[i]])
            activated_transitions_labels = set()
            for m in markings:
                # add to the set of activated transitions in the model the activated transitions
                # for each prefix
                activated_transitions_labels = activated_transitions_labels.union(
                    x.label for x in utils.get_visible_transitions_eventually_enabled_by_marking(net, m) if
                    x.label is not None)
            escaping_edges = activated_transitions_labels.difference(log_transitions)

            sum_at += len(activated_transitions_labels) * prefix_count[prefixes_keys[i]]
            sum_ee += len(escaping_edges) * prefix_count[prefixes_keys[i]]

            if debug_level > 1:
                print("")
                print("prefix=", prefixes_keys[i])
                print("log_transitions=", log_transitions)
                print("activated_transitions=", activated_transitions_labels)
                print("escaping_edges=", escaping_edges)
        else:
            unfit += prefix_count[prefixes_keys[i]]

    if debug_level > 0:
        print("\n")
        print("overall unfit", unfit)
        print("overall activated transitions", sum_at)
        print("overall escaping edges", sum_ee)

    # fix: also the empty prefix should be counted!
    start_activities = set(get_start_activities(log, parameters=parameters))
    trans_en_ini_marking = set([x.label for x in get_visible_transitions_eventually_enabled_by_marking(net, marking)])
    diff = trans_en_ini_marking.difference(start_activities)
    sum_at += len(log) * len(trans_en_ini_marking)
    sum_ee += len(log) * len(diff)
    # end fix

    if sum_at > 0:
        precision = 1 - float(sum_ee) / float(sum_at)

    return precision


def transform_markings_from_sync_to_original_net(markings0, net, parameters=None):
    """
    Transform the markings of the sync net (in which alignment stops) into markings of the original net
    (in order to measure the precision)

    Parameters
    -------------
    markings0
        Markings on the sync net (expressed as place name with count)
    net
        Petri net
    parameters
        Parameters of the algorithm

    Returns
    -------------
    markings
        Markings of the original model (expressed as place with count)
    """
    if parameters is None:
        parameters = {}

    places_corr = {p.name: p for p in net.places}

    markings = []

    for i in range(len(markings0)):
        res_list = markings0[i]

        # res_list shall be a list of markings.
        # If it is None, then there is no correspondence markings
        # in the original Petri net
        if res_list is not None:
            # saves all the markings reached by the optimal alignment
            # as markings of the original net
            markings.append([])

            for j in range(len(res_list)):
                res = res_list[j]

                atm = Marking()
                for pl, count in res.items():
                    if pl[0] == utils.SKIP:
                        atm[places_corr[pl[1]]] = count
                markings[-1].append(atm)
        else:
            markings.append(None)

    return markings


def align_fake_log_stop_marking(fake_log, net, marking, final_marking, parameters=None):
    """
    Align the 'fake' log with all the prefixes in order to get the markings in which
    the alignment stops

    Parameters
    -------------
    fake_log
        Fake log
    net
        Petri net
    marking
        Marking
    final_marking
        Final marking
    parameters
        Parameters of the algorithm

    Returns
    -------------
    alignment
        For each trace in the log, return the marking in which the alignment stops (expressed as place name with count)
    """
    if parameters is None:
        parameters = {}

    show_progress_bar = exec_utils.get_param_value(Parameters.SHOW_PROGRESS_BAR, parameters, constants.SHOW_PROGRESS_BAR)
    multiprocessing = exec_utils.get_param_value(Parameters.MULTIPROCESSING, parameters, constants.ENABLE_MULTIPROCESSING_DEFAULT)

    progress = None
    if importlib.util.find_spec("tqdm") and show_progress_bar and len(fake_log) > 1:
        from tqdm.auto import tqdm
        progress = tqdm(total=len(fake_log), desc="computing precision with alignments, completed variants :: ")

    if multiprocessing:
        align_intermediate_result = __align_log_with_multiprocessing_stop_marking(fake_log, net, marking, final_marking,
                                                                                progress, parameters=parameters)
    else:
        align_intermediate_result = __align_log_wo_multiprocessing_stop_marking(fake_log, net, marking, final_marking,
                                                                                progress, parameters=parameters)

    align_result = []
    for i in range(len(align_intermediate_result)):
        res = align_intermediate_result[i]
        if res is not None:
            align_result.append([])
            for mark in res:
                res2 = {}
                for pl in mark:
                    # transforms the markings for easier correspondence at the end
                    # (distributed engine friendly!)
                    res2[(pl.name[0], pl.name[1])] = mark[pl]

                align_result[-1].append(res2)
        else:
            # if there is no path from the initial marking
            # replaying the given prefix, then add None
            align_result.append(None)

    # gracefully close progress bar
    if progress is not None:
        progress.close()
    del progress

    return align_result


def __align_log_wo_multiprocessing_stop_marking(fake_log, net, marking, final_marking, progress, parameters=None):
    align_intermediate_result = []
    for i in range(len(fake_log)):
        res = __align_trace_stop_marking(fake_log[i], net, marking, final_marking, parameters=parameters)
        align_intermediate_result.append(res)
        if progress is not None:
            progress.update()

    return align_intermediate_result


def __align_log_with_multiprocessing_stop_marking(fake_log, net, marking, final_marking, progress, parameters=None):
    if parameters is not None:
        parameters = {}

    import multiprocessing
    from concurrent.futures import ProcessPoolExecutor

    num_cores = exec_utils.get_param_value(Parameters.CORES, parameters, multiprocessing.cpu_count() - 2)
    align_intermediate_result = []
    with ProcessPoolExecutor(max_workers=num_cores) as executor:
        futures = []
        for i in range(len(fake_log)):
            futures.append(executor.submit(__align_trace_stop_marking, fake_log[i], net, marking, final_marking, parameters))
        if progress is not None:
            alignments_ready = 0
            while alignments_ready != len(futures):
                current = 0
                for index, variant in enumerate(futures):
                    current = current + 1 if futures[index].done() else current
                if current > alignments_ready:
                    for i in range(0, current - alignments_ready):
                        progress.update()
                alignments_ready = current
        for index, variant in enumerate(futures):
            align_intermediate_result.append(futures[index].result())

    return align_intermediate_result


def __align_trace_stop_marking(trace, net, marking, final_marking, parameters=None):
    sync_net, sync_initial_marking, sync_final_marking = build_sync_net(trace, net, marking, final_marking,
                                                                        parameters=parameters)
    stop_marking = Marking()
    for pl, count in sync_final_marking.items():
        if pl.name[1] == utils.SKIP:
            stop_marking[pl] = count
    cost_function = utils.construct_standard_cost_function(sync_net, utils.SKIP)

    # perform the alignment of the prefix
    res = precision_utils.__search(sync_net, sync_initial_marking, sync_final_marking, stop_marking, cost_function,
                                   utils.SKIP)

    return res


def build_sync_net(trace, petri_net, initial_marking, final_marking, parameters=None):
    """
    Build the sync product net between the Petri net and the trace prefix

    Parameters
    ---------------
    trace
        Trace prefix
    petri_net
        Petri net
    initial_marking
        Initial marking
    final_marking
        Final marking
    parameters
        Possible parameters of the algorithm
    """
    if parameters is None:
        parameters = {}

    activity_key = exec_utils.get_param_value(Parameters.ACTIVITY_KEY, parameters, xes_constants.DEFAULT_NAME_KEY)

    trace_net, trace_im, trace_fm = construct_trace_net(trace, activity_key=activity_key)

    sync_prod, sync_initial_marking, sync_final_marking = construct(trace_net, trace_im,
                                                                                              trace_fm, petri_net,
                                                                                              initial_marking,
                                                                                              final_marking,
                                                                                              utils.SKIP)

    return sync_prod, sync_initial_marking, sync_final_marking