Spaces:
Running
Running
File size: 13,229 Bytes
e60e568 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
'''
This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de).
PM4Py is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
PM4Py is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PM4Py. If not, see <https://www.gnu.org/licenses/>.
'''
from enum import Enum
from pm4py.algo.discovery.footprints import algorithm as fp_discovery
from pm4py.objects.log.obj import EventLog, Trace, Event
from pm4py.objects.process_tree.utils import bottomup as bottomup_discovery
from pm4py.objects.process_tree.obj import Operator
from pm4py.util import constants, xes_constants
from pm4py.util import exec_utils
from typing import Optional, Dict, Any, Union
from pm4py.objects.log.obj import EventLog
from pm4py.objects.process_tree.obj import ProcessTree
TRACES = "traces"
SKIPPABLE = "skippable"
class Parameters(Enum):
MIN_TRACE_LENGTH = "min_trace_length"
MAX_TRACE_LENGTH = "max_trace_length"
MAX_LOOP_OCC = "max_loop_occ"
ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY
MAX_LIMIT_NUM_TRACES = "max_limit_num_traces"
RETURN_SET_STRINGS = "return_set_strings"
def get_playout_leaf(node, playout_dictio, min_trace_length, max_trace_length, max_loop_occ, min_rem_dict, max_rem_dict,
max_limit_num_traces):
"""
Performs the playout of a leaf (activity or invisible), returning the traces allowed by the tree
"""
mr = min_rem_dict[node]
mar = max_rem_dict[node]
playout_dictio[node] = {TRACES: set()}
if node.label is None:
playout_dictio[node][TRACES].add(tuple([]))
else:
if mar + 1 >= min_trace_length and max_trace_length - mr >= 1:
playout_dictio[node][TRACES].add((node.label,))
def get_playout_xor(node, playout_dictio, min_trace_length, max_trace_length, max_loop_occ, min_rem_dict, max_rem_dict,
max_limit_num_traces):
"""
Performs the playout of a XOR node, returning the traces allowed by the tree
"""
mr = min_rem_dict[node]
traces = set()
for n in node.children:
traces = traces.union(playout_dictio[n][TRACES])
if len(traces) > max_limit_num_traces:
break
playout_dictio[node] = {TRACES: traces}
def get_min_remaining_length(traces):
"""
Minimum remaining length (for sequential, parallel cut detection)
Parameters
--------------
traces
Traces
"""
min_len_traces = []
min_rem_length = []
for x in traces:
if len(x) == 0:
min_len_traces.append(0)
else:
min_len_traces.append(len(x[0]))
min_rem_length.append(0)
min_rem_length[-1] = 0
min_rem_length[-2] = min_len_traces[-1]
j = len(traces) - 3
while j >= 0:
min_rem_length[j] = min_rem_length[j + 1] + min_len_traces[j + 1]
j = j - 1
return min_len_traces, min_rem_length
def get_max_remaining_length(traces):
"""
Maximum remaining length (for sequential, parallel cut detection)
Parameters
--------------
traces
Traces
"""
max_len_traces = []
max_rem_length = []
for x in traces:
if len(x) == 0:
max_len_traces.append(0)
else:
max_len_traces.append(len(x[-1]))
max_rem_length.append(0)
max_rem_length[-1] = 0
max_rem_length[-2] = max_len_traces[-1]
j = len(traces) - 3
while j >= 0:
max_rem_length[j] = max_rem_length[j + 1] + max_len_traces[j + 1]
j = j - 1
return max_len_traces, max_rem_length
def flatten(x):
"""
Flattens a list of tuples
"""
ret = []
for y in x:
for z in y:
ret.append(z)
return ret
def get_sequential_compositions_children(traces, min_trace_length, max_trace_length, mr, mar, max_limit_num_traces):
"""
Returns alls the possible sequential combinations between
the children of a tree
"""
diff = max_trace_length - mr
diff2 = min_trace_length - mar
min_len_traces, min_rem_length = get_min_remaining_length(traces)
max_len_traces, max_rem_length = get_max_remaining_length(traces)
curr = list(traces[0])
i = 1
while i < len(traces):
mrl = min_rem_length[i]
marl = max_rem_length[i]
to_visit = []
j = 0
while j < len(curr):
x = curr[j]
if not type(x) is list:
x = [x]
z = 0
while z < len(traces[i]):
y = traces[i][z]
xy = list(x)
xy.append(y)
val = sum(len(k) for k in xy)
if val + mrl <= diff and val + marl >= diff2:
to_visit.append(xy)
z = z + 1
j = j + 1
curr = to_visit
i = i + 1
return curr
def get_playout_parallel(node, playout_dictio, min_trace_length, max_trace_length, max_loop_occ, min_rem_dict,
max_rem_dict, max_limit_num_traces):
"""
Performs the playout of an AND node, returning the traces allowed by the tree
"""
mr = min_rem_dict[node]
mar = max_rem_dict[node]
traces = list(sorted(playout_dictio[x][TRACES], key=lambda x: len(x)) for x in node.children)
sequential_compositions = get_sequential_compositions_children(traces, min_trace_length, max_trace_length, mr, mar, max_limit_num_traces)
final_traces = list()
for x in sequential_compositions:
if len(final_traces) >= max_limit_num_traces:
break
to_visit = [[[]] + [len(y) for y in x]]
while len(to_visit) > 0:
curr = to_visit.pop(0)
possible_choices = [i - 1 for i in range(1, len(curr)) if curr[i] > 0]
for j in possible_choices:
new = list(curr)
new[0] = list(new[0])
new[0].append(x[j][len(x[j]) - curr[j + 1]])
new[j + 1] = new[j + 1] - 1
to_visit.append(new)
if not possible_choices:
final_traces.append(tuple(curr[0]))
if len(final_traces) >= max_limit_num_traces:
break
playout_dictio[node] = {TRACES: set(final_traces)}
def get_playout_sequence(node, playout_dictio, min_trace_length, max_trace_length, max_loop_occ, min_rem_dict,
max_rem_dict, max_limit_num_traces):
"""
Performs the playout of a sequence node, returning the traces allowed by the tree
"""
mr = min_rem_dict[node]
mar = max_rem_dict[node]
final_traces = set()
traces = list(sorted(playout_dictio[x][TRACES], key=lambda x: len(x)) for x in node.children)
sequential_compositions = get_sequential_compositions_children(traces, min_trace_length, max_trace_length, mr, mar, max_limit_num_traces)
for x in sequential_compositions:
final_traces.add(tuple(flatten(x)))
playout_dictio[node] = {TRACES: final_traces}
def get_playout_loop(node, playout_dictio, min_trace_length, max_trace_length, max_loop_occ, min_rem_dict, max_rem_dict,
max_limit_num_traces):
"""
Performs the playout of a loop node, returning the traces allowed by the tree
"""
mr = min_rem_dict[node]
mar = max_rem_dict[node]
final_traces = set()
do_traces = sorted(list(playout_dictio[node.children[0]][TRACES]), key=lambda x: len(x))
redo_traces = sorted(list(playout_dictio[node.children[1]][TRACES]), key=lambda x: len(x))
min_do_trace = min(len(x) for x in do_traces) if do_traces else 0
to_visit = list((x, 0, 0) for x in do_traces)
closed = set()
diff1 = max_trace_length - mr
diff2 = max_trace_length - min_do_trace - mr
diff3 = min_trace_length - mar
while to_visit:
curr = to_visit.pop(0)
curr_trace = curr[0]
position = curr[1]
num_loops = curr[2]
if position == 0:
if curr_trace in closed:
continue
closed.add(curr_trace)
if diff3 <= len(curr_trace) <= diff1:
final_traces.add(curr_trace)
if len(final_traces) > max_limit_num_traces:
break
for y in redo_traces:
new = curr_trace + y
if len(new) <= diff2 and num_loops + 1 <= max_loop_occ:
to_visit.append((new, 1, num_loops + 1))
else:
break
elif position == 1:
for y in do_traces:
new = curr_trace + y
if len(new) <= diff1:
to_visit.append((new, 0, num_loops))
else:
break
playout_dictio[node] = {TRACES: final_traces}
def get_playout(node, playout_dictio, min_trace_length, max_trace_length, max_loop_occ, min_rem_dict, max_rem_dict,
max_limit_num_traces):
"""
Performs a playout of an ode of the process tree, given the type
"""
if len(node.children) == 0:
get_playout_leaf(node, playout_dictio, min_trace_length, max_trace_length, max_loop_occ, min_rem_dict,
max_rem_dict, max_limit_num_traces)
elif node.operator == Operator.XOR:
get_playout_xor(node, playout_dictio, min_trace_length, max_trace_length, max_loop_occ, min_rem_dict,
max_rem_dict, max_limit_num_traces)
elif node.operator == Operator.PARALLEL:
get_playout_parallel(node, playout_dictio, min_trace_length, max_trace_length, max_loop_occ, min_rem_dict,
max_rem_dict, max_limit_num_traces)
elif node.operator == Operator.SEQUENCE:
get_playout_sequence(node, playout_dictio, min_trace_length, max_trace_length, max_loop_occ, min_rem_dict,
max_rem_dict, max_limit_num_traces)
elif node.operator == Operator.LOOP:
get_playout_loop(node, playout_dictio, min_trace_length, max_trace_length, max_loop_occ, min_rem_dict,
max_rem_dict, max_limit_num_traces)
def apply(tree: ProcessTree, parameters : Optional[Dict[Union[str, Parameters], Any]] = None) -> EventLog:
"""
Performs an extensive playout of the process tree
Parameters
-------------
tree
Process tree
parameters
Possible parameters, including:
- Parameters.MIN_TRACE_LENGTH => minimum length of a trace (default: 1)
- Parameters.MAX_TRACE_LENGTH => maximum length of a trace (default: min_allowed_trace_length)
- Parameters.MAX_LOOP_OCC => maximum number of occurrences for a loop (default: MAX_TRACE_LENGTH)
- Parameters.ACTIVITY_KEY => activity key
- Parameters.MAX_LIMIT_NUM_TRACES => maximum number to the limit of traces; the playout shall stop when the number is reached (default: 100000)
Returns
-------------
log
Event log
"""
if parameters is None:
parameters = {}
activity_key = exec_utils.get_param_value(Parameters.ACTIVITY_KEY, parameters, xes_constants.DEFAULT_NAME_KEY)
# to save memory in the returned log, allocate each activity once. to know the list of activities of the
# process tree, use the footprints module
fp_tree = fp_discovery.apply(tree, parameters=parameters)
activities = fp_tree["activities"]
activities = {act: Event({activity_key: act}) for act in activities}
min_allowed_trace_length = bottomup_discovery.get_min_trace_length(tree, parameters=parameters)
min_trace_length = exec_utils.get_param_value(Parameters.MIN_TRACE_LENGTH, parameters, 1)
max_trace_length = exec_utils.get_param_value(Parameters.MAX_TRACE_LENGTH, parameters, min_allowed_trace_length)
max_loop_occ = exec_utils.get_param_value(Parameters.MAX_LOOP_OCC, parameters, int(max_trace_length / 2))
max_limit_num_traces = exec_utils.get_param_value(Parameters.MAX_LIMIT_NUM_TRACES, parameters, 100000)
return_set_strings = exec_utils.get_param_value(Parameters.RETURN_SET_STRINGS, parameters, False)
bottomup = bottomup_discovery.get_bottomup_nodes(tree, parameters=parameters)
min_rem_dict = bottomup_discovery.get_min_rem_dict(tree, parameters=parameters)
max_rem_dict = bottomup_discovery.get_max_rem_dict(tree, parameters=parameters)
playout_dictio = {}
for i in range(len(bottomup)):
get_playout(bottomup[i], playout_dictio, min_trace_length, max_trace_length, max_loop_occ, min_rem_dict,
max_rem_dict, max_limit_num_traces)
tree_playout_traces = playout_dictio[tree][TRACES]
if return_set_strings:
return tree_playout_traces
log = EventLog()
for tr0 in tree_playout_traces:
trace = Trace()
for act in tr0:
trace.append(activities[act])
log.append(trace)
return log
|