Spaces:
Running
Running
File size: 50,072 Bytes
e60e568 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 |
'''
This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de).
PM4Py is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
PM4Py is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PM4Py. If not, see <https://www.gnu.org/licenses/>.
'''
__doc__ = """
The ``pm4py.conformance`` module contains the conformance checking algorithms implemented in ``pm4py``
"""
from typing import List, Dict, Any, Union, Optional, Tuple, Set
from pm4py.objects.log.obj import EventLog, Trace, Event, EventStream
from pm4py.objects.petri_net.obj import PetriNet, Marking
from pm4py.convert import convert_to_event_log
from pm4py.objects.process_tree.obj import ProcessTree
from pm4py.util import xes_constants, constants
from pm4py.utils import get_properties, __event_log_deprecation_warning
from pm4py.util.pandas_utils import check_is_pandas_dataframe, check_pandas_dataframe_columns
import pandas as pd
import deprecation
def conformance_diagnostics_token_based_replay(log: Union[EventLog, pd.DataFrame], petri_net: PetriNet, initial_marking: Marking,
final_marking: Marking, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name", return_diagnostics_dataframe: bool = constants.DEFAULT_RETURN_DIAGNOSTICS_DATAFRAME, opt_parameters: Optional[Dict[Any, Any]] = None) -> List[Dict[str, Any]]:
"""
Apply token-based replay for conformance checking analysis.
The methods return the full token-based-replay diagnostics.
Token-based replay matches a trace and a Petri net model, starting from the initial place, in order to discover which transitions are executed and in which places we have remaining or missing tokens for the given process instance. Token-based replay is useful for Conformance Checking: indeed, a trace is fitting according to the model if, during its execution, the transitions can be fired without the need to insert any missing token. If the reaching of the final marking is imposed, then a trace is fitting if it reaches the final marking without any missing or remaining tokens.
In PM4Py there is an implementation of a token replayer that is able to go across hidden transitions (calculating shortest paths between places) and can be used with any Petri net model with unique visible transitions and hidden transitions. When a visible transition needs to be fired and not all places in the preset are provided with the correct number of tokens, starting from the current marking it is checked if for some place there is a sequence of hidden transitions that could be fired in order to enable the visible transition. The hidden transitions are then fired and a marking that permits to enable the visible transition is reached.
The approach is described in:
Berti, Alessandro, and Wil MP van der Aalst. "Reviving Token-based Replay: Increasing Speed While Improving Diagnostics." ATAED@ Petri Nets/ACSD. 2019.
The output of the token-based replay, stored in the variable replayed_traces, contains for each trace of the log:
- trace_is_fit: boolean value (True/False) that is true when the trace is according to the model.
- activated_transitions: list of transitions activated in the model by the token-based replay.
- reached_marking: marking reached at the end of the replay.
- missing_tokens: number of missing tokens.
- consumed_tokens: number of consumed tokens.
- remaining_tokens: number of remaining tokens.
- produced_tokens: number of produced tokens.
:param log: event log
:param petri_net: petri net
:param initial_marking: initial marking
:param final_marking: final marking
:param activity_key: attribute to be used for the activity
:param timestamp_key: attribute to be used for the timestamp
:param case_id_key: attribute to be used as case identifier
:param return_diagnostics_dataframe: if possible, returns a dataframe with the diagnostics (instead of the usual output)
:param opt_parameters: optional parameters of the token-based replay, including:
* reach_mark_through_hidden: boolean value that decides if we shall try to reach the final marking through hidden transitions
* stop_immediately_unfit: boolean value that decides if we shall stop immediately when a non-conformance is detected
* walk_through_hidden_trans: boolean value that decides if we shall walk through hidden transitions in order to enable visible transitions
* places_shortest_path_by_hidden: shortest paths between places by hidden transitions
* is_reduction: expresses if the token-based replay is called in a reduction attempt
* thread_maximum_ex_time: alignment threads maximum allowed execution time
* cleaning_token_flood: decides if a cleaning of the token flood shall be operated
* disable_variants: disable variants grouping
* return_object_names: decides whether names instead of object pointers shall be returned
:rtype: ``List[Dict[str, Any]]``
.. code-block:: python3
import pm4py
net, im, fm = pm4py.discover_petri_net_inductive(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
tbr_diagnostics = pm4py.conformance_diagnostics_token_based_replay(dataframe, net, im, fm, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
"""
__event_log_deprecation_warning(log)
if check_is_pandas_dataframe(log):
check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
if return_diagnostics_dataframe:
log = convert_to_event_log(log, case_id_key=case_id_key)
case_id_key = None
properties = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
if opt_parameters is None:
opt_parameters = {}
for k, v in opt_parameters.items():
properties[k] = v
from pm4py.algo.conformance.tokenreplay import algorithm as token_replay
result = token_replay.apply(log, petri_net, initial_marking, final_marking, parameters=properties)
if return_diagnostics_dataframe:
return token_replay.get_diagnostics_dataframe(log, result, parameters=properties)
return result
def conformance_diagnostics_alignments(log: Union[EventLog, pd.DataFrame], *args, multi_processing: bool = constants.ENABLE_MULTIPROCESSING_DEFAULT, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name", variant_str : Optional[str] = None, return_diagnostics_dataframe: bool = constants.DEFAULT_RETURN_DIAGNOSTICS_DATAFRAME, **kwargs) -> List[Dict[str, Any]]:
"""
Apply the alignments algorithm between a log and a process model.
The methods return the full alignment diagnostics.
Alignment-based replay aims to find one of the best alignment between the trace and the model. For each trace, the output of an alignment is a list of couples where the first element is an event (of the trace) or » and the second element is a transition (of the model) or ». For each couple, the following classification could be provided:
- Sync move: the classification of the event corresponds to the transition label; in this case, both the trace and the model advance in the same way during the replay.
- Move on log: for couples where the second element is », it corresponds to a replay move in the trace that is not mimicked in the model. This kind of move is unfit and signal a deviation between the trace and the model.
- Move on model: for couples where the first element is », it corresponds to a replay move in the model that is not mimicked in the trace. For moves on model, we can have the following distinction:
* Moves on model involving hidden transitions: in this case, even if it is not a sync move, the move is fit.
* Moves on model not involving hidden transitions: in this case, the move is unfit and signals a deviation between the trace and the model.
With each trace, a dictionary containing among the others the following information is associated:
alignment: contains the alignment (sync moves, moves on log, moves on model)
cost: contains the cost of the alignment according to the provided cost function
fitness: is equal to 1 if the trace is perfectly fitting.
:param log: event log
:param args: specification of the process model
:param multi_processing: boolean value that enables the multiprocessing
:param activity_key: attribute to be used for the activity
:param timestamp_key: attribute to be used for the timestamp
:param case_id_key: attribute to be used as case identifier
:param variant_str: variant specification (for Petri net alignments)
:param return_diagnostics_dataframe: if possible, returns a dataframe with the diagnostics (instead of the usual output)
:rtype: ``List[Dict[str, Any]]``
.. code-block:: python3
import pm4py
net, im, fm = pm4py.discover_petri_net_inductive(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
alignments_diagnostics = pm4py.conformance_diagnostics_alignments(dataframe, net, im, fm, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
"""
__event_log_deprecation_warning(log)
if check_is_pandas_dataframe(log):
check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
if return_diagnostics_dataframe:
log = convert_to_event_log(log, case_id_key=case_id_key)
case_id_key = None
properties = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
if kwargs is not None:
for k, v in kwargs.items():
properties[k] = v
if len(args) == 3:
if type(args[0]) is PetriNet:
# Petri net alignments
from pm4py.algo.conformance.alignments.petri_net import algorithm as alignments
variant = alignments.DEFAULT_VARIANT
if variant_str is not None:
variant = variant_str
if multi_processing:
result = alignments.apply_multiprocessing(log, args[0], args[1], args[2], parameters=properties, variant=variant)
else:
result = alignments.apply(log, args[0], args[1], args[2], parameters=properties, variant=variant)
if return_diagnostics_dataframe:
return alignments.get_diagnostics_dataframe(log, result, parameters=properties)
return result
elif isinstance(args[0], dict):
# DFG alignments
from pm4py.algo.conformance.alignments.dfg import algorithm as dfg_alignment
result = dfg_alignment.apply(log, args[0], args[1], args[2], parameters=properties)
return result
elif len(args) == 1:
if type(args[0]) is ProcessTree:
# process tree alignments
from pm4py.algo.conformance.alignments.process_tree.variants import search_graph_pt
if multi_processing:
result = search_graph_pt.apply_multiprocessing(log, args[0], parameters=properties)
else:
result = search_graph_pt.apply(log, args[0], parameters=properties)
return result
elif type(args[0]) in [EventLog, pd.DataFrame]:
# edit distance alignments (log2log)
from pm4py.algo.conformance.alignments.edit_distance import algorithm as edit_distance_alignments
result = edit_distance_alignments.apply(log, args[0], parameters=properties)
return result
# try to convert to Petri net
import pm4py
from pm4py.algo.conformance.alignments.petri_net import algorithm as alignments
net, im, fm = pm4py.convert_to_petri_net(*args)
if multi_processing:
result = alignments.apply_multiprocessing(log, net, im, fm, parameters=properties)
else:
result = alignments.apply(log, net, im, fm, parameters=properties)
if return_diagnostics_dataframe:
return alignments.get_diagnostics_dataframe(log, result, parameters=properties)
return result
def fitness_token_based_replay(log: Union[EventLog, pd.DataFrame], petri_net: PetriNet, initial_marking: Marking, final_marking: Marking, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> \
Dict[
str, float]:
"""
Calculates the fitness using token-based replay.
The fitness is calculated on a log-based level.
The output dictionary contains the following keys:
- perc_fit_traces (the percentage of fit traces (from 0.0 to 100.0))
- average_trace_fitness (between 0.0 and 1.0; computed as average of the trace fitnesses)
- log_fitness (between 0.0 and 1.0)
- percentage_of_fitting_traces (the percentage of fit traces (from 0.0 to 100.0)
Token-based replay matches a trace and a Petri net model, starting from the initial place, in order to discover which transitions are executed and in which places we have remaining or missing tokens for the given process instance. Token-based replay is useful for Conformance Checking: indeed, a trace is fitting according to the model if, during its execution, the transitions can be fired without the need to insert any missing token. If the reaching of the final marking is imposed, then a trace is fitting if it reaches the final marking without any missing or remaining tokens.
In PM4Py there is an implementation of a token replayer that is able to go across hidden transitions (calculating shortest paths between places) and can be used with any Petri net model with unique visible transitions and hidden transitions. When a visible transition needs to be fired and not all places in the preset are provided with the correct number of tokens, starting from the current marking it is checked if for some place there is a sequence of hidden transitions that could be fired in order to enable the visible transition. The hidden transitions are then fired and a marking that permits to enable the visible transition is reached.
The approach is described in:
Berti, Alessandro, and Wil MP van der Aalst. "Reviving Token-based Replay: Increasing Speed While Improving Diagnostics." ATAED@ Petri Nets/ACSD. 2019.
The calculation of the replay fitness aim to calculate how much of the behavior in the log is admitted by the process model. We propose two methods to calculate replay fitness, based on token-based replay and alignments respectively.
For token-based replay, the percentage of traces that are completely fit is returned, along with a fitness value that is calculated as indicated in the scientific contribution
:param log: event log
:param petri_net: petri net
:param initial_marking: initial marking
:param final_marking: final marking
:param activity_key: attribute to be used for the activity
:param timestamp_key: attribute to be used for the timestamp
:param case_id_key: attribute to be used as case identifier
:rtype: ``Dict[str, float]``
.. code-block:: python3
import pm4py
net, im, fm = pm4py.discover_petri_net_inductive(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
fitness_tbr = pm4py.fitness_token_based_replay(dataframe, net, im, fm, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
"""
__event_log_deprecation_warning(log)
if check_is_pandas_dataframe(log):
check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
properties = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
from pm4py.algo.evaluation.replay_fitness import algorithm as replay_fitness
result = replay_fitness.apply(log, petri_net, initial_marking, final_marking,
variant=replay_fitness.Variants.TOKEN_BASED, parameters=properties)
return result
def fitness_alignments(log: Union[EventLog, pd.DataFrame], petri_net: PetriNet, initial_marking: Marking, final_marking: Marking, multi_processing: bool = constants.ENABLE_MULTIPROCESSING_DEFAULT, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name", variant_str : Optional[str] = None) -> \
Dict[str, float]:
"""
Calculates the fitness using alignments
The output dictionary contains the following keys:
- average_trace_fitness (between 0.0 and 1.0; computed as average of the trace fitnesses)
- log_fitness (between 0.0 and 1.0)
- percentage_of_fitting_traces (the percentage of fit traces (from 0.0 to 100.0)
Alignment-based replay aims to find one of the best alignment between the trace and the model. For each trace, the output of an alignment is a list of couples where the first element is an event (of the trace) or » and the second element is a transition (of the model) or ». For each couple, the following classification could be provided:
- Sync move: the classification of the event corresponds to the transition label; in this case, both the trace and the model advance in the same way during the replay.
- Move on log: for couples where the second element is », it corresponds to a replay move in the trace that is not mimicked in the model. This kind of move is unfit and signal a deviation between the trace and the model.
- Move on model: for couples where the first element is », it corresponds to a replay move in the model that is not mimicked in the trace. For moves on model, we can have the following distinction:
* Moves on model involving hidden transitions: in this case, even if it is not a sync move, the move is fit.
* Moves on model not involving hidden transitions: in this case, the move is unfit and signals a deviation between the trace and the model.
The calculation of the replay fitness aim to calculate how much of the behavior in the log is admitted by the process model. We propose two methods to calculate replay fitness, based on token-based replay and alignments respectively.
For alignments, the percentage of traces that are completely fit is returned, along with a fitness value that is calculated as the average of the fitness values of the single traces.
:param log: event log
:param petri_net: petri net
:param initial_marking: initial marking
:param final_marking: final marking
:param multi_processing: boolean value that enables the multiprocessing
:param activity_key: attribute to be used for the activity
:param timestamp_key: attribute to be used for the timestamp
:param case_id_key: attribute to be used as case identifier
:param variant_str: variant specification
:rtype: ``Dict[str, float]``
.. code-block:: python3
import pm4py
net, im, fm = pm4py.discover_petri_net_inductive(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
fitness_alignments = pm4py.fitness_alignments(dataframe, net, im, fm, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
"""
__event_log_deprecation_warning(log)
if check_is_pandas_dataframe(log):
check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
from pm4py.algo.evaluation.replay_fitness import algorithm as replay_fitness
parameters = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
parameters["multiprocessing"] = multi_processing
result = replay_fitness.apply(log, petri_net, initial_marking, final_marking,
variant=replay_fitness.Variants.ALIGNMENT_BASED, align_variant=variant_str, parameters=parameters)
return result
def precision_token_based_replay(log: Union[EventLog, pd.DataFrame], petri_net: PetriNet, initial_marking: Marking,
final_marking: Marking, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> float:
"""
Calculates the precision precision using token-based replay
Token-based replay matches a trace and a Petri net model, starting from the initial place, in order to discover which transitions are executed and in which places we have remaining or missing tokens for the given process instance. Token-based replay is useful for Conformance Checking: indeed, a trace is fitting according to the model if, during its execution, the transitions can be fired without the need to insert any missing token. If the reaching of the final marking is imposed, then a trace is fitting if it reaches the final marking without any missing or remaining tokens.
In PM4Py there is an implementation of a token replayer that is able to go across hidden transitions (calculating shortest paths between places) and can be used with any Petri net model with unique visible transitions and hidden transitions. When a visible transition needs to be fired and not all places in the preset are provided with the correct number of tokens, starting from the current marking it is checked if for some place there is a sequence of hidden transitions that could be fired in order to enable the visible transition. The hidden transitions are then fired and a marking that permits to enable the visible transition is reached.
The approach is described in:
Berti, Alessandro, and Wil MP van der Aalst. "Reviving Token-based Replay: Increasing Speed While Improving Diagnostics." ATAED@ Petri Nets/ACSD. 2019.
The reference paper for the TBR-based precision (ETConformance) is:
Muñoz-Gama, Jorge, and Josep Carmona. "A fresh look at precision in process conformance." International Conference on Business Process Management. Springer, Berlin, Heidelberg, 2010.
In this approach, the different prefixes of the log are replayed (whether possible) on the model. At the reached marking, the set of transitions that are enabled in the process model is compared with the set of activities that follow the prefix. The more the sets are different, the more the precision value is low. The more the sets are similar, the more the precision value is high.
:param log: event log
:param petri_net: petri net
:param initial_marking: initial marking
:param final_marking: final marking
:param activity_key: attribute to be used for the activity
:param timestamp_key: attribute to be used for the timestamp
:param case_id_key: attribute to be used as case identifier
:rtype: ``float``
.. code-block:: python3
import pm4py
net, im, fm = pm4py.discover_petri_net_inductive(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
precision_tbr = pm4py.precision_token_based_replay(dataframe, net, im, fm, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
"""
__event_log_deprecation_warning(log)
if check_is_pandas_dataframe(log):
check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
properties = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
from pm4py.algo.evaluation.precision import algorithm as precision_evaluator
result = precision_evaluator.apply(log, petri_net, initial_marking, final_marking,
variant=precision_evaluator.Variants.ETCONFORMANCE_TOKEN, parameters=properties)
return result
def precision_alignments(log: Union[EventLog, pd.DataFrame], petri_net: PetriNet, initial_marking: Marking,
final_marking: Marking, multi_processing: bool = constants.ENABLE_MULTIPROCESSING_DEFAULT, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> float:
"""
Calculates the precision of the model w.r.t. the event log using alignments
Alignment-based replay aims to find one of the best alignment between the trace and the model. For each trace, the output of an alignment is a list of couples where the first element is an event (of the trace) or » and the second element is a transition (of the model) or ». For each couple, the following classification could be provided:
- Sync move: the classification of the event corresponds to the transition label; in this case, both the trace and the model advance in the same way during the replay.
- Move on log: for couples where the second element is », it corresponds to a replay move in the trace that is not mimicked in the model. This kind of move is unfit and signal a deviation between the trace and the model.
- Move on model: for couples where the first element is », it corresponds to a replay move in the model that is not mimicked in the trace. For moves on model, we can have the following distinction:
* Moves on model involving hidden transitions: in this case, even if it is not a sync move, the move is fit.
* Moves on model not involving hidden transitions: in this case, the move is unfit and signals a deviation between the trace and the model.
The reference paper for the alignments-based precision (Align-ETConformance) is:
Adriansyah, Arya, et al. "Measuring precision of modeled behavior." Information systems and e-Business Management 13.1 (2015): 37-67
In this approach, the different prefixes of the log are replayed (whether possible) on the model. At the reached marking, the set of transitions that are enabled in the process model is compared with the set of activities that follow the prefix. The more the sets are different, the more the precision value is low. The more the sets are similar, the more the precision value is high.
:param log: event log
:param petri_net: petri net
:param initial_marking: initial marking
:param final_marking: final marking
:param multi_processing: boolean value that enables the multiprocessing
:param activity_key: attribute to be used for the activity
:param timestamp_key: attribute to be used for the timestamp
:param case_id_key: attribute to be used as case identifier
:rtype: ``float``
.. code-block:: python3
import pm4py
net, im, fm = pm4py.discover_petri_net_inductive(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
precision_alignments = pm4py.precision_alignments(dataframe, net, im, fm, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
"""
__event_log_deprecation_warning(log)
if check_is_pandas_dataframe(log):
check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
from pm4py.algo.evaluation.precision import algorithm as precision_evaluator
parameters = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
parameters["multiprocessing"] = multi_processing
result = precision_evaluator.apply(log, petri_net, initial_marking, final_marking,
variant=precision_evaluator.Variants.ALIGN_ETCONFORMANCE,
parameters=parameters)
return result
def generalization_tbr(log: Union[EventLog, pd.DataFrame], petri_net: PetriNet, initial_marking: Marking,
final_marking: Marking, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> float:
"""
Computes the generalization of the model (against the event log). The approach is described in the paper:
Buijs, Joos CAM, Boudewijn F. van Dongen, and Wil MP van der Aalst. "Quality dimensions in process discovery: The importance of fitness, precision, generalization and simplicity." International Journal of Cooperative Information Systems 23.01 (2014): 1440001.
:param log: event log
:param petri_net: petri net
:param initial_marking: initial marking
:param final_marking: final marking
:param multi_processing: boolean value that enables the multiprocessing
:param activity_key: attribute to be used for the activity
:param timestamp_key: attribute to be used for the timestamp
:param case_id_key: attribute to be used as case identifier
:rtype: ``float``
.. code-block:: python3
import pm4py
net, im, fm = pm4py.discover_petri_net_inductive(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
generalization_tbr = pm4py.generalization_tbr(dataframe, net, im, fm)
"""
__event_log_deprecation_warning(log)
if check_is_pandas_dataframe(log):
check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
from pm4py.algo.evaluation.generalization import algorithm as generalization_evaluator
parameters = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
result = generalization_evaluator.apply(log, petri_net, initial_marking, final_marking, variant=generalization_evaluator.Variants.GENERALIZATION_TOKEN, parameters=parameters)
return result
def replay_prefix_tbr(prefix: List[str], net: PetriNet, im: Marking, fm: Marking, activity_key: str = "concept:name") -> Marking:
"""
Replays a prefix (list of activities) on a given accepting Petri net, using Token-Based Replay.
:param prefix: list of activities
:param net: Petri net
:param im: initial marking
:param fm: final marking
:param activity_key: attribute to be used as activity
:rtype: ``Marking``
.. code-block:: python3
import pm4py
net, im, fm = pm4py.read_pnml('tests/input_data/running-example.pnml')
marking = pm4py.replay_prefix_tbr(['register request', 'check ticket'], net, im, fm)
"""
purpose_log = EventLog()
trace = Trace()
for act in prefix:
trace.append(Event({activity_key: act}))
purpose_log.append(trace)
from pm4py.algo.conformance.tokenreplay.variants import token_replay
parameters_tr = {
token_replay.Parameters.CONSIDER_REMAINING_IN_FITNESS: False,
token_replay.Parameters.TRY_TO_REACH_FINAL_MARKING_THROUGH_HIDDEN: False,
token_replay.Parameters.STOP_IMMEDIATELY_UNFIT: True,
token_replay.Parameters.WALK_THROUGH_HIDDEN_TRANS: True,
token_replay.Parameters.ACTIVITY_KEY: activity_key
}
res = token_replay.apply(purpose_log, net, im, fm, parameters=parameters_tr)[0]
return res["reached_marking"]
@deprecation.deprecated(deprecated_in="2.3.0", removed_in="3.0.0", details="conformance checking using footprints will not be exposed in a future release")
def __convert_to_fp(*args) -> Union[List[Dict[str, Any]], Dict[str, Any]]:
"""
Internal method to convert the provided event log / process model argument
to footprints (using footprints discovery)
:param args: event log / process model
:rtype: ``Union[List[Dict[str, Any]], Dict[str, Any]]``
"""
import pm4py
while type(args) is tuple:
if len(args) == 1:
args = args[0]
else:
fp = pm4py.discover_footprints(*args)
return fp
if isinstance(args, list) or isinstance(args, dict):
return args
fp = pm4py.discover_footprints(args)
return fp
@deprecation.deprecated(deprecated_in="2.3.0", removed_in="3.0.0", details="conformance checking using footprints will not be exposed in a future release")
def conformance_diagnostics_footprints(*args) -> Union[List[Dict[str, Any]], Dict[str, Any]]:
"""
Provide conformance checking diagnostics using footprints
:param args: provided arguments (the first argument is supposed to be an event log (or the footprints discovered from the event log); the other arguments are supposed to be the process model (or the footprints discovered from the process model).
:rtype: ``Union[List[Dict[str, Any]], Dict[str, Any]]``
.. code-block:: python3
import pm4py
net, im, fm = pm4py.discover_petri_net_inductive(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
footprints_diagnostics = pm4py.conformance_diagnostics_footprints(dataframe, net, im, fm, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
"""
fp1 = __convert_to_fp(args[0])
fp2 = __convert_to_fp(args[1:])
from pm4py.algo.conformance.footprints import algorithm as footprints_conformance
if isinstance(fp1, list):
result = footprints_conformance.apply(fp1, fp2, variant=footprints_conformance.Variants.TRACE_EXTENSIVE)
else:
result = footprints_conformance.apply(fp1, fp2, variant=footprints_conformance.Variants.LOG_EXTENSIVE)
return result
@deprecation.deprecated(deprecated_in="2.3.0", removed_in="3.0.0", details="conformance checking using footprints will not be exposed in a future release")
def fitness_footprints(*args) -> Dict[str, float]:
"""
Calculates fitness using footprints. The output is a dictionary containing two keys:
- perc_fit_traces => percentage of fit traces (over the log)
- log_fitness => the fitness value over the log
:param args: provided arguments (the first argument is supposed to be an event log (or the footprints discovered from the event log); the other arguments are supposed to be the process model (or the footprints discovered from the process model).
:rtype: ``Dict[str, float]``
.. code-block:: python3
import pm4py
net, im, fm = pm4py.discover_petri_net_inductive(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
fitness_fp = pm4py.fitness_footprints(dataframe, net, im, fm, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
"""
fp_conf = conformance_diagnostics_footprints(*args)
fp1 = __convert_to_fp(args[0])
fp2 = __convert_to_fp(args[1:])
from pm4py.algo.conformance.footprints.util import evaluation
result = evaluation.fp_fitness(fp1, fp2, fp_conf)
return result
@deprecation.deprecated(deprecated_in="2.3.0", removed_in="3.0.0", details="conformance checking using footprints will not be exposed in a future release")
def precision_footprints(*args) -> float:
"""
Calculates precision using footprints
:param args: provided arguments (the first argument is supposed to be an event log (or the footprints discovered from the event log); the other arguments are supposed to be the process model (or the footprints discovered from the process model).
:rtype: ``float``
.. code-block:: python3
import pm4py
net, im, fm = pm4py.discover_petri_net_inductive(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
precision_fp = pm4py.precision_footprints(dataframe, net, im, fm, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
"""
fp1 = __convert_to_fp(args[0])
fp2 = __convert_to_fp(args[1:])
from pm4py.algo.conformance.footprints.util import evaluation
result = evaluation.fp_precision(fp1, fp2)
return result
@deprecation.deprecated(removed_in="2.3.0", deprecated_in="3.0.0", details="this method will be removed in a future release.")
def __check_is_fit_process_tree(trace, tree) -> bool:
"""
Check if a trace object is fit against a process tree model
:param trace: trace
:param tree: process tree
:rtype: ``bool``
"""
__event_log_deprecation_warning(trace)
from pm4py.discovery import discover_footprints
log = EventLog()
log.append(trace)
fp_tree = discover_footprints(tree)
fp_log = discover_footprints(log)
fp_conf_res = conformance_diagnostics_footprints(fp_log, fp_tree)[0]
# CHECK 1) if footprints already say is not fit, then return False
# (if they say True, it might be a false positive)
if not fp_conf_res["is_footprints_fit"]:
return False
else:
from pm4py.convert import convert_to_petri_net
net, im, fm = convert_to_petri_net(tree)
tbr_conf_res = conformance_diagnostics_token_based_replay(log, net, im, fm, return_diagnostics_dataframe=False)[0]
# CHECK 2) if TBR says that is fit, then return True
# (if they say False, it might be a false negative)
if tbr_conf_res["trace_is_fit"]:
return True
else:
# CHECK 3) alignments definitely say if the trace is fit or not if the previous methods fail
align_conf_res = conformance_diagnostics_alignments(log, tree, return_diagnostics_dataframe=False)[0]
return align_conf_res["fitness"] == 1.0
@deprecation.deprecated(deprecated_in="2.3.0", removed_in="3.0.0", details="this method will be removed in a future release.")
def __check_is_fit_petri_net(trace, net, im, fm, activity_key=xes_constants.DEFAULT_NAME_KEY) -> bool:
"""
Checks if a trace object is fit against Petri net object
:param trace: trace
:param net: petri net
:param im: initial marking
:param fm: final marking
:param activity_key: attribute to be used as activity
:rtype: ``bool``
"""
__event_log_deprecation_warning(trace)
# avoid checking footprints on Petri net (they are too slow)
activities_model = set(trans.label for trans in net.transitions if trans.label is not None)
activities_trace = set([x[activity_key] for x in trace])
diff = activities_trace.difference(activities_model)
if diff:
# CHECK 1) there are activities in the trace that are not in the model
return False
else:
log = EventLog()
log.append(trace)
tbr_conf_res = conformance_diagnostics_token_based_replay(log, net, im, fm, return_diagnostics_dataframe=False)[0]
# CHECK 2) if TBR says that is fit, then return True
# (if they say False, it might be a false negative)
if tbr_conf_res["trace_is_fit"]:
return True
else:
# CHECK 3) alignments definitely say if the trace is fit or not if the previous methods fail
align_conf_res = conformance_diagnostics_alignments(log, net, im, fm, return_diagnostics_dataframe=False)[0]
return align_conf_res["fitness"] == 1.0
@deprecation.deprecated(deprecated_in="2.3.0", removed_in="3.0.0", details="this method will be removed in a future release.")
def check_is_fitting(*args, activity_key=xes_constants.DEFAULT_NAME_KEY) -> bool:
"""
Checks if a trace object is fit against a process model
:param args: arguments (trace object; process model (process tree, petri net, BPMN))
:rtype: ``bool``
"""
from pm4py.util import variants_util
from pm4py.convert import convert_to_process_tree, convert_to_petri_net
trace = args[0]
model = args[1:]
try:
model = convert_to_process_tree(*model)
except:
# the model cannot be expressed as a process tree, let's say if at least can be expressed as a Petri net
model = convert_to_petri_net(*model)
if not isinstance(trace, Trace):
activities = variants_util.get_activities_from_variant(trace)
trace = Trace()
for act in activities:
trace.append(Event({activity_key: act}))
if isinstance(model, ProcessTree):
return __check_is_fit_process_tree(trace, model)
elif isinstance(model, tuple) and isinstance(model[0], PetriNet):
return __check_is_fit_petri_net(trace, model[0], model[1], model[2], activity_key=activity_key)
def conformance_temporal_profile(log: Union[EventLog, pd.DataFrame], temporal_profile: Dict[Tuple[str, str], Tuple[float, float]], zeta: float = 1.0, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name", return_diagnostics_dataframe: bool = constants.DEFAULT_RETURN_DIAGNOSTICS_DATAFRAME) -> List[List[Tuple[float, float, float, float]]]:
"""
Performs conformance checking on the provided log with the provided temporal profile.
The result is a list of time-based deviations for every case.
E.g. if the log on top of which the conformance is applied is the following (1 case):
A (timestamp: 2000-01) B (timestamp: 2002-01)
The difference between the timestamps of A and B is two years. If the temporal profile:
{('A', 'B'): (1.5 months, 0.5 months), ('A', 'C'): (5 months, 0), ('A', 'D'): (2 months, 0)}
is specified, and zeta is set to 1, then the aforementioned case would be deviating
(considering the couple of activities ('A', 'B')), because 2 years > 1.5 months + 0.5 months.
:param log: log object
:param temporal_profile: temporal profile. E.g., if the log has two cases: A (timestamp: 1980-01) B (timestamp: 1980-03) C (timestamp: 1980-06); A (timestamp: 1990-01) B (timestamp: 1990-02) D (timestamp: 1990-03); The temporal profile will contain: {('A', 'B'): (1.5 months, 0.5 months), ('A', 'C'): (5 months, 0), ('A', 'D'): (2 months, 0)}
:param zeta: number of standard deviations allowed from the average. E.g. zeta=1 allows every timestamp between AVERAGE-STDEV and AVERAGE+STDEV.
:param activity_key: attribute to be used for the activity
:param timestamp_key: attribute to be used for the timestamp
:param case_id_key: attribute to be used as case identifier
:param return_diagnostics_dataframe: if possible, returns a dataframe with the diagnostics (instead of the usual output)
:rtype: ``List[List[Tuple[float, float, float, float]]]``
.. code-block:: python3
import pm4py
temporal_profile = pm4py.discover_temporal_profile(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
conformance_temporal_profile = pm4py.conformance_temporal_profile(dataframe, temporal_profile, zeta=1, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
"""
__event_log_deprecation_warning(log)
if check_is_pandas_dataframe(log):
check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
properties = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
properties["zeta"] = zeta
from pm4py.algo.conformance.temporal_profile import algorithm as temporal_profile_conformance
result = temporal_profile_conformance.apply(log, temporal_profile, parameters=properties)
if return_diagnostics_dataframe:
return temporal_profile_conformance.get_diagnostics_dataframe(log, result, parameters=properties)
return result
def conformance_declare(log: Union[EventLog, pd.DataFrame], declare_model: Dict[str, Dict[Any, Dict[str, int]]], activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name", return_diagnostics_dataframe: bool = constants.DEFAULT_RETURN_DIAGNOSTICS_DATAFRAME) -> List[Dict[str, Any]]:
"""
Applies conformance checking against a DECLARE model.
Reference paper:
F. M. Maggi, A. J. Mooij and W. M. P. van der Aalst, "User-guided discovery of declarative process models," 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), Paris, France, 2011, pp. 192-199, doi: 10.1109/CIDM.2011.5949297.
:param log: event log
:param declare_model: DECLARE model
:param activity_key: attribute to be used for the activity
:param timestamp_key: attribute to be used for the timestamp
:param case_id_key: attribute to be used as case identifier
:param return_diagnostics_dataframe: if possible, returns a dataframe with the diagnostics (instead of the usual output)
:rtype: ``List[Dict[str, Any]]``
.. code-block:: python3
import pm4py
log = pm4py.read_xes("C:/receipt.xes")
declare_model = pm4py.discover_declare(log)
conf_result = pm4py.conformance_declare(log, declare_model)
"""
__event_log_deprecation_warning(log)
if check_is_pandas_dataframe(log):
check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key,
case_id_key=case_id_key)
if return_diagnostics_dataframe:
log = convert_to_event_log(log, case_id_key=case_id_key)
case_id_key = None
properties = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
from pm4py.algo.conformance.declare import algorithm as declare_conformance
result = declare_conformance.apply(log, declare_model, parameters=properties)
if return_diagnostics_dataframe:
return declare_conformance.get_diagnostics_dataframe(log, result, parameters=properties)
return result
def conformance_log_skeleton(log: Union[EventLog, pd.DataFrame], log_skeleton: Dict[str, Any], activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name", return_diagnostics_dataframe: bool = constants.DEFAULT_RETURN_DIAGNOSTICS_DATAFRAME) -> List[Set[Any]]:
"""
Performs conformance checking using the log skeleton
Reference paper:
Verbeek, H. M. W., and R. Medeiros de Carvalho. "Log skeletons: A classification approach to process discovery." arXiv preprint arXiv:1806.08247 (2018).
A log skeleton is a declarative model which consists of six different constraints:
- "directly_follows": specifies for some activities some strict bounds on the activities directly-following. For example,
'A should be directly followed by B' and 'B should be directly followed by C'.
- "always_before": specifies that some activities may be executed only if some other activities are executed somewhen before
in the history of the case.
For example, 'C should always be preceded by A'
- "always_after": specifies that some activities should always trigger the execution of some other activities
in the future history of the case.
For example, 'A should always be followed by C'
- "equivalence": specifies that a given couple of activities should happen with the same number of occurrences inside
a case.
For example, 'B and C should always happen the same number of times'.
- "never_together": specifies that a given couple of activities should never happen together in the history of the case.
For example, 'there should be no case containing both C and D'.
- "activ_occurrences": specifies the allowed number of occurrences per activity:
E.g. A is allowed to be executed 1 or 2 times, B is allowed to be executed 1 or 2 or 3 or 4 times.
:param log: log object
:param log_skeleton: log skeleton object, expressed as dictionaries of the six constraints (never_together, always_before ...) along with the discovered rules.
:param activity_key: attribute to be used for the activity
:param timestamp_key: attribute to be used for the timestamp
:param case_id_key: attribute to be used as case identifier
:param return_diagnostics_dataframe: if possible, returns a dataframe with the diagnostics (instead of the usual output)
:rtype: ``List[Set[Any]]``
.. code-block:: python3
import pm4py
log_skeleton = pm4py.discover_log_skeleton(dataframe, noise_threshold=0.1, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
conformance_lsk = pm4py.conformance_log_skeleton(dataframe, log_skeleton, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
"""
__event_log_deprecation_warning(log)
if check_is_pandas_dataframe(log):
check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
if return_diagnostics_dataframe:
log = convert_to_event_log(log, case_id_key=case_id_key)
case_id_key = None
properties = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
from pm4py.algo.conformance.log_skeleton import algorithm as log_skeleton_conformance
result = log_skeleton_conformance.apply(log, log_skeleton, parameters=properties)
if return_diagnostics_dataframe:
return log_skeleton_conformance.get_diagnostics_dataframe(log, result, parameters=properties)
return result
|