File size: 20,752 Bytes
e60e568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
'''
    This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de).

    PM4Py is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    PM4Py is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with PM4Py.  If not, see <https://www.gnu.org/licenses/>.
'''
__doc__ = """
The ``pm4py.convert`` module contains the cross-conversions implemented in ``pm4py``
"""

from typing import Union, Tuple, Optional, Collection, List, Any, Dict

import pandas as pd
from copy import deepcopy

from pm4py.objects.bpmn.obj import BPMN
from pm4py.objects.ocel.obj import OCEL
from pm4py.objects.powl.obj import POWL
from pm4py.objects.heuristics_net.obj import HeuristicsNet
from pm4py.objects.log.obj import EventLog, EventStream
from pm4py.objects.petri_net.obj import Marking
from pm4py.objects.process_tree.obj import ProcessTree
from pm4py.objects.petri_net.obj import PetriNet
from pm4py.util import constants, nx_utils
from pm4py.utils import get_properties, __event_log_deprecation_warning
from pm4py.objects.transition_system.obj import TransitionSystem
from pm4py.util.pandas_utils import check_is_pandas_dataframe, check_pandas_dataframe_columns
import networkx as nx


def convert_to_event_log(obj: Union[pd.DataFrame, EventStream], case_id_key: str = "case:concept:name", **kwargs) -> EventLog:
    """
    Converts a DataFrame/EventStream object to an event log object

    :param obj: DataFrame or EventStream object
    :param case_id_key: attribute to be used as case identifier
    :rtype: ``EventLog``
    
    .. code-block:: python3

       import pandas as pd
       import pm4py

       dataframe = pm4py.read_csv("tests/input_data/running-example.csv")
       dataframe = pm4py.format_dataframe(dataframe, case_id_column='case:concept:name', activity_column='concept:name', timestamp_column='time:timestamp')
       log = pm4py.convert_to_event_log(dataframe)
    """

    if check_is_pandas_dataframe(obj):
        check_pandas_dataframe_columns(obj, case_id_key=case_id_key)

    parameters = get_properties(obj, case_id_key=case_id_key)
    for k, v in kwargs.items():
        parameters[k] = v

    from pm4py.objects.conversion.log import converter
    log = converter.apply(obj, variant=converter.Variants.TO_EVENT_LOG, parameters=parameters)

    __event_log_deprecation_warning(log)

    return log


def convert_to_event_stream(obj: Union[EventLog, pd.DataFrame], case_id_key: str = "case:concept:name", **kwargs) -> EventStream:
    """
    Converts a log object to an event stream

    :param obj: log object
    :param case_id_key: attribute to be used as case identifier
    :rtype: ``EventStream``
    
    .. code-block:: python3

       import pm4py

       log = pm4py.read_xes("tests/input_data/running-example.xes")
       event_stream = pm4py.convert_to_event_stream(log)

    """
    if check_is_pandas_dataframe(obj):
        check_pandas_dataframe_columns(obj, case_id_key=case_id_key)

    parameters = get_properties(obj, case_id_key=case_id_key)
    for k, v in kwargs.items():
        parameters[k] = v

    from pm4py.objects.conversion.log import converter
    stream = converter.apply(obj, variant=converter.Variants.TO_EVENT_STREAM, parameters=parameters)

    __event_log_deprecation_warning(stream)

    return stream


def convert_to_dataframe(obj: Union[EventStream, EventLog], **kwargs) -> pd.DataFrame:
    """
    Converts a log object to a dataframe

    :param obj: log object
    :rtype: ``pd.DataFrame``
    
    .. code-block:: python3

       import pm4py

       log = pm4py.read_xes("tests/input_data/running-example.xes")
       dataframe = pm4py.convert_to_dataframe(log)
    """
    if check_is_pandas_dataframe(obj):
        check_pandas_dataframe_columns(obj)

    parameters = get_properties(obj)
    for k, v in kwargs.items():
        parameters[k] = v
    
    from pm4py.objects.conversion.log import converter
    df = converter.apply(obj, variant=converter.Variants.TO_DATA_FRAME, parameters=parameters)
    return df


def convert_to_bpmn(*args: Union[Tuple[PetriNet, Marking, Marking], ProcessTree]) -> BPMN:
    """
    Converts an object to a BPMN diagram.
    As an input, either a Petri net (with corresponding initial and final marking) or a process tree can be provided.
    A process tree can always be converted into a BPMN model and thus quality of the result object is guaranteed.
    For Petri nets, the quality of the converison largely depends on the net provided (e.g., sound WF-nets are likely to produce reasonable BPMN models)    

    :param args: petri net (with initial and final marking) or process tree
    :rtype: ``BPMN``
    
    .. code-block:: python3

       import pm4py

       # import a Petri net from a file
       net, im, fm = pm4py.read_pnml("tests/input_data/running-example.pnml")
       bpmn_graph = pm4py.convert_to_bpmn(net, im, fm)
    """
    from pm4py.objects.process_tree.obj import ProcessTree
    from pm4py.objects.bpmn.obj import BPMN

    if isinstance(args[0], BPMN):
        # the object is already a BPMN
        return args[0]
    elif isinstance(args[0], ProcessTree):
        from pm4py.objects.conversion.process_tree.variants import to_bpmn
        return to_bpmn.apply(args[0])
    else:
        # try to convert the object to a Petri net. Then, use the PM4Py PN-to-BPMN converter
        # to get the BPMN object
        try:
            net, im, fm = convert_to_petri_net(*args)
            from pm4py.objects.conversion.wf_net.variants import to_bpmn
            return to_bpmn.apply(net, im, fm)
        except:
            # don't do nothing and throw the following exception
            pass
    # if no conversion is done, then the format of the arguments is unsupported
    raise Exception("unsupported conversion of the provided object to BPMN")


def convert_to_petri_net(*args: Union[BPMN, ProcessTree, HeuristicsNet, POWL, dict]) -> Tuple[PetriNet, Marking, Marking]:
    """
    Converts an input model to an (accepting) Petri net.
    The input objects can either be a process tree, BPMN model or a Heuristic net.
    The output is a triple, containing the Petri net and the initial and final markings. The markings are only returned if they can be reasonable derived from the input model.

    :param args: process tree, Heuristics net, BPMN or POWL model
    :rtype: ``Tuple[PetriNet, Marking, Marking]``
    
    .. code-block:: python3

       import pm4py

       # imports a process tree from a PTML file
       process_tree = pm4py.read_ptml("tests/input_data/running-example.ptml")
       net, im, fm = pm4py.convert_to_petri_net(process_tree)
    """
    if isinstance(args[0], PetriNet):
        # the object is already a Petri net
        return args[0], args[1], args[2]
    elif isinstance(args[0], ProcessTree):
        if isinstance(args[0], POWL):
            from pm4py.objects.conversion.powl import converter
            return converter.apply(args[0])
        from pm4py.objects.conversion.process_tree.variants import to_petri_net
        return to_petri_net.apply(args[0])
    elif isinstance(args[0], BPMN):
        from pm4py.objects.conversion.bpmn.variants import to_petri_net
        return to_petri_net.apply(args[0])
    elif isinstance(args[0], HeuristicsNet):
        from pm4py.objects.conversion.heuristics_net.variants import to_petri_net
        return to_petri_net.apply(args[0])
    elif isinstance(args[0], dict):
        # DFG
        from pm4py.objects.conversion.dfg.variants import to_petri_net_activity_defines_place
        return to_petri_net_activity_defines_place.apply(args[0], parameters={
            to_petri_net_activity_defines_place.Parameters.START_ACTIVITIES: args[1],
            to_petri_net_activity_defines_place.Parameters.END_ACTIVITIES: args[2]})
    # if no conversion is done, then the format of the arguments is unsupported
    raise Exception("unsupported conversion of the provided object to Petri net")


def convert_to_process_tree(*args: Union[Tuple[PetriNet, Marking, Marking], BPMN]) -> ProcessTree:
    """
    Converts an input model to a process tree.
    The input models can either be Petri nets (marked) or BPMN models.
    For both input types, the conversion is not guaranteed to work, hence, invocation of the method can yield an Exception.

    :param args: petri net (along with initial and final marking) or BPMN
    :rtype: ``ProcessTree``
    
    .. code-block:: python3

       import pm4py

       # imports a BPMN file
       bpmn_graph = pm4py.read_bpmn("tests/input_data/running-example.bpmn")
       # converts the BPMN to a process tree (through intermediate conversion to a Petri net)
       process_tree = pm4py.convert_to_process_tree(bpmn_graph)
    """
    from pm4py.objects.process_tree.obj import ProcessTree
    from pm4py.objects.petri_net.obj import PetriNet
    if isinstance(args[0], ProcessTree):
        # the object is already a process tree
        return args[0]

    if isinstance(args[0], PetriNet):
        net, im, fm = args[0], args[1], args[2]
    else:
        net, im, fm = convert_to_petri_net(*args)

    from pm4py.objects.conversion.wf_net.variants import to_process_tree
    tree = to_process_tree.apply(net, im, fm)
    if tree is not None:
        return tree

    raise Exception("the object represents a model that cannot be represented as a process tree!")


def convert_to_reachability_graph(*args: Union[Tuple[PetriNet, Marking, Marking], BPMN, ProcessTree]) -> TransitionSystem:
    """
    Converts an input model to a reachability graph (transition system).
    The input models can either be Petri nets (with markings), BPMN models or process trees.
    The output is the state-space of the model (i.e., the reachability graph), enocdoed as a ``TransitionSystem`` object.

    :param args: petri net (along with initial and final marking), process tree or BPMN
    :rtype: ``TransitionSystem``
    
    .. code-block:: python3

        import pm4py

        # reads a Petri net from a file
        net, im, fm = pm4py.read_pnml("tests/input_data/running-example.pnml")
        # converts it to reachability graph
        reach_graph = pm4py.convert_to_reachability_graph(net, im, fm)
    """
    if isinstance(args[0], PetriNet):
        net, im, fm = args[0], args[1], args[2]
    else:
        net, im, fm = convert_to_petri_net(*args)

    from pm4py.objects.petri_net.utils import reachability_graph
    return reachability_graph.construct_reachability_graph(net, im)


def convert_log_to_ocel(log: Union[EventLog, EventStream, pd.DataFrame], activity_column: str = "concept:name", timestamp_column: str = "time:timestamp", object_types: Optional[Collection[str]] = None, obj_separator: str = " AND ", additional_event_attributes: Optional[Collection[str]] = None, additional_object_attributes: Optional[Dict[str, Collection[str]]] = None) -> OCEL:
    """
    Converts an event log to an object-centric event log with one or more than one
    object types.

    :param log_obj: log object
    :param activity_column: activity column
    :param timestamp_column: timestamp column
    :param object_types: list of columns to consider as object types
    :param obj_separator: separator between different objects in the same column
    :param additional_event_attributes: additional attributes to be considered as event attributes in the OCEL
    :param additional_object_attributes: additional attributes per object type to be considered as object attributes in the OCEL (dictionary in which object types are associated to their attributes, i.e., {"order": ["quantity", "cost"], "invoice": ["date", "due date"]})
    :rtype: ``OCEL``

    .. code-block:: python3
        import pm4py

        ocel = pm4py.convert_log_to_ocel(log, activity_column='concept:name', timestamp_column='time:timestamp',
                        object_types=['case:concept:name'])
    """
    __event_log_deprecation_warning(log)

    if isinstance(log, EventStream):
        log = convert_to_dataframe(log)

    if object_types is None:
        object_types = list(set(x for x in log.columns if x == "case:concept:name" or x.startswith("ocel:type")))

    from pm4py.objects.ocel.util import log_ocel
    return log_ocel.log_to_ocel_multiple_obj_types(log, activity_column, timestamp_column, object_types, obj_separator, additional_event_attributes=additional_event_attributes, additional_object_attributes=additional_object_attributes)


def convert_ocel_to_networkx(ocel: OCEL, variant: str = "ocel_to_nx") -> nx.DiGraph:
    """
    Converts an OCEL to a NetworkX DiGraph object.

    :param ocel: object-centric event log
    :param variant: variant of the conversion to use: "ocel_to_nx" -> graph containing event and object IDS and two type of relations (REL=related objects, DF=directly-follows); "ocel_features_to_nx" -> graph containing different types of interconnection at the object level
    :rtype: ``nx.DiGraph``

    .. code-block:: python3
        import pm4py

        nx_digraph = pm4py.convert_ocel_to_networkx(ocel, variant='ocel_to_nx')
    """
    from pm4py.objects.conversion.ocel import converter

    variant1 = None
    if variant == "ocel_to_nx":
        variant1 = converter.Variants.OCEL_TO_NX
    elif variant == "ocel_features_to_nx":
        variant1 = converter.Variants.OCEL_FEATURES_TO_NX

    return converter.apply(ocel, variant=variant1)


def convert_log_to_networkx(log: Union[EventLog, EventStream, pd.DataFrame], include_df: bool = True, case_id_key: str = "concept:name", other_case_attributes_as_nodes: Optional[Collection[str]] = None, event_attributes_as_nodes: Optional[Collection[str]] = None) -> nx.DiGraph:
    """
    Converts an event log object to a NetworkX DiGraph object.
    The nodes of the graph are the events, the cases (and possibly the attributes of the log).
    The edges are:
    - Connecting each event to the corresponding case (BELONGS_TO type)
    - Connecting every event to the directly-following one (DF type, if enabled)
    - Connecting every case/event to the given attribute values (ATTRIBUTE_EDGE type)

    :param log: log object (EventLog, EventStream, Pandas dataframe)
    :param include_df: include the directly-follows graph relation in the graph (bool)
    :param case_id_attribute: specify which attribute at the case level should be considered the case ID (str)
    :param other_case_attributes_as_nodes: specify which attributes at the case level should be inserted in the graph as nodes (other than the caseID) (list, default empty)
    :param event_attributes_as_nodes: specify which attributes at the event level should be inserted in the graph as nodes (list, default empty)
    :rtype: ``nx.DiGraph``

    .. code-block:: python3
        import pm4py

        nx_digraph = pm4py.convert_log_to_networkx(log, other_case_attributes_as_nodes=['responsible', 'department'], event_attributes_as_nodes=['concept:name', 'org:resource'])
    """
    from pm4py.objects.conversion.log import converter

    return converter.apply(log, variant=converter.Variants.TO_NX, parameters={"include_df": include_df, "case_id_attribute": case_id_key, "other_case_attributes_as_nodes": other_case_attributes_as_nodes, "event_attributes_as_nodes": event_attributes_as_nodes})


def convert_log_to_time_intervals(log: Union[EventLog, pd.DataFrame], filter_activity_couple: Optional[Tuple[str, str]] = None,
                                  activity_key: str = "concept:name",
                                  timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name",
                                  start_timestamp_key: str = "time:timestamp"
                                  ) -> List[List[Any]]:
    """
    Gets a list of intervals from an event log.
    Each interval contains two temporally consecutive events and measures the time between the two events
    (complete timestamp of the first against start timestamp of the second).

    :param log: log object
    :param filter_activity_couple: (optional) filters the intervals to only consider a given couple of activities of the log
    :param activity_key: the attribute to be used as activity
    :param timestamp_key: the attribute to be used as timestamp
    :param case_id_key: the attribute to be used as case identifier
    :param start_timestamp_key: the attribute to be used as start timestamp
    :rtype: ``List[List[Any]]``

    .. code-block:: python3

        import pm4py

        log = pm4py.read_xes('tests/input_data/receipt.xes')
        time_intervals = pm4py.convert_log_to_time_intervals(log)
        print(len(time_intervals))
        time_intervals = pm4py.convert_log_to_time_intervals(log, ('Confirmation of receipt', 'T02 Check confirmation of receipt'))
        print(len(time_intervals))
    """
    __event_log_deprecation_warning(log)

    properties = get_properties(log, activity_key=activity_key, case_id_key=case_id_key, timestamp_key=timestamp_key)
    properties["filter_activity_couple"] = filter_activity_couple
    properties[constants.PARAMETER_CONSTANT_START_TIMESTAMP_KEY] = start_timestamp_key

    from pm4py.algo.transformation.log_to_interval_tree.variants import open_paths
    return open_paths.log_to_intervals(log, parameters=properties)


def convert_petri_net_to_networkx(net: PetriNet, im: Marking, fm: Marking) -> nx.DiGraph:
    """
    Converts a Petri net to a NetworkX DiGraph.
    Each place and transition is corresponding to a node in the graph.

    :param net: Petri net
    :param im: initial marking
    :param fm: final marking
    :rtype: ``nx.DiGraph``

    .. code-block:: python3
        import pm4py

        net, im, fm = pm4py.read_pnml('tests/input_data/running-example.pnml')
        nx_digraph = pm4py.convert_petri_to_networkx(net, im, fm)
    """
    G = nx_utils.DiGraph()
    for place in net.places:
        G.add_node(place.name, attr={"name": place.name, "is_in_im": place in im, "is_in_fm": place in fm, "type": "place"})
    for trans in net.transitions:
        G.add_node(trans.name, attr={"name": trans.name, "label": trans.label, "type": "transition"})
    for arc in net.arcs:
        G.add_edge(arc.source.name, arc.target.name, attr={"weight": arc.weight, "properties": arc.properties})
    return G


def convert_petri_net_type(net: PetriNet, im: Marking, fm: Marking, type: str = "classic") -> Tuple[PetriNet, Marking, Marking]:
    """
    Changes the Petri net (internal) type

    :param net: petri net
    :param im: initial marking
    :param fm: final marking
    :param type: internal type (classic, reset, inhibitor, reset_inhibitor)
    :rtype: ``Tuple[PetriNet, Marking, Marking]``

    .. code-block:: python3
        import pm4py

        net, im, fm = pm4py.read_pnml('tests/input_data/running-example.pnml')
        reset_net, new_im, new_fm = pm4py.convert_petri_net_type(net, im, fm, type='reset_inhibitor')
    """
    from pm4py.objects.petri_net.utils import petri_utils

    [net, im, fm] = deepcopy([net, im, fm])
    new_net = None
    if type == "classic":
        from pm4py.objects.petri_net.obj import PetriNet
        new_net = PetriNet(net.name)
    elif type == "reset":
        from pm4py.objects.petri_net.obj import ResetNet
        new_net = ResetNet(net.name)
    elif type == "inhibitor":
        from pm4py.objects.petri_net.obj import InhibitorNet
        new_net = InhibitorNet(net.name)
    elif type == "reset_inhibitor":
        from pm4py.objects.petri_net.obj import ResetInhibitorNet
        new_net = ResetInhibitorNet(net.name)
    for place in net.places:
        new_net.places.add(place)
        in_arcs = set(place.in_arcs)
        out_arcs = set(place.out_arcs)
        for arc in in_arcs:
            place.in_arcs.remove(arc)
        for arc in out_arcs:
            place.out_arcs.remove(arc)
    for trans in net.transitions:
        new_net.transitions.add(trans)
        in_arcs = set(trans.in_arcs)
        out_arcs = set(trans.out_arcs)
        for arc in in_arcs:
            trans.in_arcs.remove(arc)
        for arc in out_arcs:
            trans.out_arcs.remove(arc)
    for arc in net.arcs:
        arc_type = arc.properties["arctype"] if "arctype" in arc.properties else None
        new_arc = petri_utils.add_arc_from_to(arc.source, arc.target, new_net, weight=arc.weight, type=arc_type)
    return new_net, im, fm