File size: 61,940 Bytes
e60e568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
'''
    This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de).

    PM4Py is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    PM4Py is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with PM4Py.  If not, see <https://www.gnu.org/licenses/>.
'''
__doc__ = """
The ``pm4py.filtering`` module contains the filtering features offered in ``pm4py``
"""

from typing import Union, Set, List, Tuple, Collection, Any, Dict, Optional

import pandas as pd

from pm4py.objects.log.obj import EventLog, EventStream
from pm4py.util import constants, xes_constants, pandas_utils, nx_utils
import warnings
from pm4py.util.pandas_utils import check_is_pandas_dataframe, check_pandas_dataframe_columns
from pm4py.utils import get_properties, __event_log_deprecation_warning
from pm4py.objects.ocel.obj import OCEL
import datetime


def filter_log_relative_occurrence_event_attribute(log: Union[EventLog, pd.DataFrame], min_relative_stake: float, attribute_key : str = xes_constants.DEFAULT_NAME_KEY, level="cases", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> Union[EventLog, pd.DataFrame]:
    """
    Filters the event log keeping only the events having an attribute value which occurs:
    - in at least the specified (min_relative_stake) percentage of events, when level="events"
    - in at least the specified (min_relative_stake) percentage of cases, when level="cases"

    :param log: event log / Pandas dataframe
    :param min_relative_stake: minimum percentage of cases (expressed as a number between 0 and 1) in which the attribute should occur.
    :param attribute_key: the attribute to filter
    :param level: the level of the filter (if level="events", then events / if level="cases", then cases)
    :param timestamp_key: attribute to be used for the timestamp
    :param case_id_key: attribute to be used as case identifier
    :rtype: ``Union[EventLog, pd.DataFrame]``

    .. code-block:: python3

        import pm4py

        filtered_dataframe = pm4py.filter_log_relative_occurrence_event_attribute(dataframe, 0.5, level='cases', case_id_key='case:concept:name', timestamp_key='time:timestamp')
    """
    __event_log_deprecation_warning(log)

    parameters = get_properties(log, timestamp_key=timestamp_key, case_id_key=case_id_key, activity_key=attribute_key)
    if check_is_pandas_dataframe(log):
        check_pandas_dataframe_columns(log, timestamp_key=timestamp_key, case_id_key=case_id_key)
        from pm4py.algo.filtering.pandas.attributes import attributes_filter
        parameters[attributes_filter.Parameters.ATTRIBUTE_KEY] = attribute_key
        parameters[attributes_filter.Parameters.KEEP_ONCE_PER_CASE] = True if level == "cases" else False
        return attributes_filter.filter_df_relative_occurrence_event_attribute(log, min_relative_stake, parameters=parameters)
    else:
        from pm4py.algo.filtering.log.attributes import attributes_filter
        parameters[attributes_filter.Parameters.ATTRIBUTE_KEY] = attribute_key
        parameters[attributes_filter.Parameters.KEEP_ONCE_PER_CASE] = True if level == "cases" else False
        return attributes_filter.filter_log_relative_occurrence_event_attribute(log, min_relative_stake, parameters=parameters)


def filter_start_activities(log: Union[EventLog, pd.DataFrame], activities: Union[Set[str], List[str]], retain: bool = True, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> \
Union[EventLog, pd.DataFrame]:
    """
    Filter cases having a start activity in the provided list

    :param log: event log / Pandas dataframe
    :param activities: collection of start activities
    :param retain: if True, we retain the traces containing the given start activities, if false, we drop the traces
    :param activity_key: attribute to be used for the activity
    :param timestamp_key: attribute to be used for the timestamp
    :param case_id_key: attribute to be used as case identifier
    :rtype: ``Union[EventLog, pd.DataFrame]``

    .. code-block:: python3

        import pm4py

        filtered_dataframe = pm4py.filter_start_activities(dataframe, ['Act. A'], activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
    """
    __event_log_deprecation_warning(log)

    parameters = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
    if check_is_pandas_dataframe(log):
        check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
        from pm4py.algo.filtering.pandas.start_activities import start_activities_filter
        parameters[start_activities_filter.Parameters.POSITIVE] = retain
        return start_activities_filter.apply(log, activities,
                                             parameters=parameters)
    else:
        from pm4py.algo.filtering.log.start_activities import start_activities_filter
        parameters[start_activities_filter.Parameters.POSITIVE] = retain
        return start_activities_filter.apply(log, activities,
                                             parameters=parameters)


def filter_end_activities(log: Union[EventLog, pd.DataFrame], activities:  Union[Set[str], List[str]], retain: bool = True, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> Union[
    EventLog, pd.DataFrame]:
    """
    Filter cases having an end activity in the provided list

    :param log: event log / Pandas dataframe
    :param activities: collection of end activities
    :param retain: if True, we retain the traces containing the given end activities, if false, we drop the traces
    :param activity_key: attribute to be used for the activity
    :param timestamp_key: attribute to be used for the timestamp
    :param case_id_key: attribute to be used as case identifier
    :rtype: ``Union[EventLog, pd.DataFrame]``

    .. code-block:: python3

        import pm4py

        filtered_dataframe = pm4py.filter_end_activities(dataframe, ['Act. Z'], activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
    """
    __event_log_deprecation_warning(log)

    parameters = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
    if check_is_pandas_dataframe(log):
        check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
        from pm4py.algo.filtering.pandas.end_activities import end_activities_filter
        parameters[end_activities_filter.Parameters.POSITIVE] = retain
        return end_activities_filter.apply(log, activities,
                                           parameters=parameters)
    else:
        from pm4py.algo.filtering.log.end_activities import end_activities_filter
        parameters[end_activities_filter.Parameters.POSITIVE] = retain
        return end_activities_filter.apply(log, activities,
                                           parameters=parameters)


def filter_event_attribute_values(log: Union[EventLog, pd.DataFrame], attribute_key: str, values:  Union[Set[str], List[str]],
                                  level: str = "case", retain: bool = True, case_id_key: str = "case:concept:name") -> Union[EventLog, pd.DataFrame]:
    """
    Filter a log object on the values of some event attribute

    :param log: event log / Pandas dataframe
    :param attribute_key: attribute to filter
    :param values: admitted (or forbidden) values
    :param level: specifies how the filter should be applied ('case' filters the cases where at least one occurrence happens, 'event' filter the events eventually trimming the cases)
    :param retain: specifies if the values should be kept or removed
    :param case_id_key: attribute to be used as case identifier
    :rtype: ``Union[EventLog, pd.DataFrame]``

    .. code-block:: python3

        import pm4py

        filtered_dataframe = pm4py.filter_event_attribute_values(dataframe, 'concept:name', ['Act. A', 'Act. Z'], case_id_key='case:concept:name')
    """
    __event_log_deprecation_warning(log)

    parameters = get_properties(log, case_id_key=case_id_key)
    parameters[constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY] = attribute_key
    if check_is_pandas_dataframe(log):
        check_pandas_dataframe_columns(log, case_id_key=case_id_key)
        from pm4py.algo.filtering.pandas.attributes import attributes_filter
        if level == "event":
            parameters[attributes_filter.Parameters.POSITIVE] = retain
            return attributes_filter.apply_events(log, values,
                                                  parameters=parameters)
        elif level == "case":
            parameters[attributes_filter.Parameters.POSITIVE] = retain
            return attributes_filter.apply(log, values, parameters=parameters)
    else:
        from pm4py.algo.filtering.log.attributes import attributes_filter
        if level == "event":
            parameters[attributes_filter.Parameters.POSITIVE] = retain
            return attributes_filter.apply_events(log, values,
                                                  parameters=parameters)
        elif level == "case":
            parameters[attributes_filter.Parameters.POSITIVE] = retain
            return attributes_filter.apply(log, values, parameters=parameters)


def filter_trace_attribute_values(log: Union[EventLog, pd.DataFrame], attribute_key: str, values:  Union[Set[str], List[str]],
                                  retain: bool = True, case_id_key: str = "case:concept:name") -> Union[EventLog, pd.DataFrame]:
    """
    Filter a log on the values of a trace attribute

    :param log: event log / Pandas dataframe
    :param attribute_key: attribute to filter
    :param values: collection of values to filter
    :param retain: boolean value (keep/discard matching traces)
    :param case_id_key: attribute to be used as case identifier
    :rtype: ``Union[EventLog, pd.DataFrame]``

    .. code-block:: python3

        import pm4py

        filtered_dataframe = pm4py.filter_trace_attribute_values(dataframe, 'case:creator', ['Mike'], case_id_key='case:concept:name')
    """
    __event_log_deprecation_warning(log)

    parameters = get_properties(log, case_id_key=case_id_key)
    parameters[constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY] = attribute_key
    if check_is_pandas_dataframe(log):
        check_pandas_dataframe_columns(log, case_id_key=case_id_key)
        from pm4py.algo.filtering.pandas.attributes import attributes_filter
        parameters[attributes_filter.Parameters.POSITIVE] = retain
        return attributes_filter.apply(log, values,
                                       parameters=parameters)
    else:
        from pm4py.algo.filtering.log.attributes import attributes_filter
        parameters[attributes_filter.Parameters.POSITIVE] = retain
        return attributes_filter.apply_trace_attribute(log, values, parameters=parameters)


def filter_variants(log: Union[EventLog, pd.DataFrame], variants:  Union[Set[str], List[str], List[Tuple[str]]], retain: bool = True, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> Union[
    EventLog, pd.DataFrame]:
    """
    Filter a log on a specified set of variants

    :param log: event log / Pandas dataframe
    :param variants: collection of variants to filter; A variant should be specified as a list of tuples of activity names, e.g., [('a', 'b', 'c')]
    :param retain: boolean; if True all traces conforming to the specified variants are retained; if False, all those traces are removed
    :param activity_key: attribute to be used for the activity
    :param timestamp_key: attribute to be used for the timestamp
    :param case_id_key: attribute to be used as case identifier
    :rtype: ``Union[EventLog, pd.DataFrame]``

    .. code-block:: python3

        import pm4py

        filtered_dataframe = pm4py.filter_variants(dataframe, [('Act. A', 'Act. B', 'Act. Z'), ('Act. A', 'Act. C', 'Act. Z')], activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
    """
    __event_log_deprecation_warning(log)

    from pm4py.util import variants_util
    parameters = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
    if check_is_pandas_dataframe(log):
        check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
        from pm4py.algo.filtering.pandas.variants import variants_filter
        parameters[variants_filter.Parameters.POSITIVE] = retain
        return variants_filter.apply(log, variants,
                                     parameters=parameters)
    else:
        from pm4py.algo.filtering.log.variants import variants_filter
        parameters[variants_filter.Parameters.POSITIVE] = retain
        return variants_filter.apply(log, variants,
                                     parameters=parameters)


def filter_directly_follows_relation(log: Union[EventLog, pd.DataFrame], relations: List[str], retain: bool = True, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> \
        Union[EventLog, pd.DataFrame]:
    """
    Retain traces that contain any of the specified 'directly follows' relations.
    For example, if relations == [('a','b'),('a','c')] and log [<a,b,c>,<a,c,b>,<a,d,b>]
    the resulting log will contain traces describing [<a,b,c>,<a,c,b>].

    :param log: event log / Pandas dataframe
    :param relations: list of activity name pairs, which are allowed/forbidden paths
    :param retain: parameter that says whether the paths should be kept/removed
    :param activity_key: attribute to be used for the activity
    :param timestamp_key: attribute to be used for the timestamp
    :param case_id_key: attribute to be used as case identifier
    :rtype: ``Union[EventLog, pd.DataFrame]``

    .. code-block:: python3

        import pm4py

        filtered_dataframe = pm4py.filter_directly_follows_relation(dataframe, [('A','B'),('A','C')], activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
    """
    __event_log_deprecation_warning(log)

    parameters = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
    if check_is_pandas_dataframe(log):
        from pm4py.algo.filtering.pandas.paths import paths_filter
        parameters[paths_filter.Parameters.POSITIVE] = retain
        return paths_filter.apply(log, relations, parameters=parameters)
    else:
        from pm4py.algo.filtering.log.paths import paths_filter
        parameters[paths_filter.Parameters.POSITIVE] = retain
        return paths_filter.apply(log, relations, parameters=parameters)


def filter_eventually_follows_relation(log: Union[EventLog, pd.DataFrame], relations: List[str], retain: bool = True, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> \
        Union[EventLog, pd.DataFrame]:
    """
    Retain traces that contain any of the specified 'eventually follows' relations.
    For example, if relations == [('a','b'),('a','c')] and log [<a,b,c>,<a,c,b>,<a,d,b>]
    the resulting log will contain traces describing [<a,b,c>,<a,c,b>,<a,d,b>].

    :param log: event log / Pandas dataframe
    :param relations: list of activity name pairs, which are allowed/forbidden paths
    :param retain: parameter that says whether the paths should be kept/removed
    :param activity_key: attribute to be used for the activity
    :param timestamp_key: attribute to be used for the timestamp
    :param case_id_key: attribute to be used as case identifier
    :rtype: ``Union[EventLog, pd.DataFrame]``

    .. code-block:: python3

        import pm4py

        filtered_dataframe = pm4py.filter_eventually_follows_relation(dataframe, [('A','B'),('A','C')], activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
    """
    __event_log_deprecation_warning(log)

    parameters = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
    if check_is_pandas_dataframe(log):
        from pm4py.algo.filtering.pandas.ltl import ltl_checker
        parameters[ltl_checker.Parameters.POSITIVE] = retain
        if retain:
            cases = set()
        else:
            cases = set(log[case_id_key].to_numpy().tolist())
        for path in relations:
            filt_log = ltl_checker.eventually_follows(log, path,
                                                      parameters=parameters)
            this_traces = set(filt_log[case_id_key].to_numpy().tolist())
            if retain:
                cases = cases.union(this_traces)
            else:
                cases = cases.intersection(this_traces)
        return log[log[case_id_key].isin(cases)]
    else:
        from pm4py.algo.filtering.log.ltl import ltl_checker
        parameters[ltl_checker.Parameters.POSITIVE] = retain
        if retain:
            cases = set()
        else:
            cases = set(id(trace) for trace in log)
        for path in relations:
            filt_log = ltl_checker.eventually_follows(log, path,
                                                      parameters=parameters)
            this_traces = set(id(trace) for trace in filt_log)
            if retain:
                cases = cases.union(this_traces)
            else:
                cases = cases.intersection(this_traces)
        filtered_log = EventLog(attributes=log.attributes, extensions=log.extensions, omni_present=log.omni_present,
                                classifiers=log.classifiers, properties=log.properties)
        for trace in log:
            if id(trace) in cases:
                filtered_log.append(trace)
        return filtered_log


def filter_time_range(log: Union[EventLog, pd.DataFrame], dt1: str, dt2: str, mode="events", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> Union[
    EventLog, pd.DataFrame]:
    """
    Filter a log on a time interval

    :param log: event log / Pandas dataframe
    :param dt1: left extreme of the interval
    :param dt2: right extreme of the interval
    :param mode: modality of filtering (events, traces_contained, traces_intersecting). events: any event that fits the time frame is retained; traces_contained: any trace completely contained in the timeframe is retained; traces_intersecting: any trace intersecting with the time-frame is retained.
    :param timestamp_key: attribute to be used for the timestamp
    :param case_id_key: attribute to be used as case identifier
    :rtype: ``Union[EventLog, pd.DataFrame]``

    .. code-block:: python3

        import pm4py

        filtered_dataframe1 = pm4py.filter_time_range(dataframe, '2010-01-01 00:00:00', '2011-01-01 00:00:00', mode='traces_contained', case_id_key='case:concept:name', timestamp_key='time:timestamp')
        filtered_dataframe1 = pm4py.filter_time_range(dataframe, '2010-01-01 00:00:00', '2011-01-01 00:00:00', mode='traces_intersecting', case_id_key='case:concept:name', timestamp_key='time:timestamp')
        filtered_dataframe1 = pm4py.filter_time_range(dataframe, '2010-01-01 00:00:00', '2011-01-01 00:00:00', mode='events', case_id_key='case:concept:name', timestamp_key='time:timestamp')
    """
    __event_log_deprecation_warning(log)

    properties = get_properties(log, timestamp_key=timestamp_key, case_id_key=case_id_key)
    if check_is_pandas_dataframe(log):
        from pm4py.algo.filtering.pandas.timestamp import timestamp_filter
        if mode == "events":
            return timestamp_filter.apply_events(log, dt1, dt2, parameters=properties)
        elif mode == "traces_contained":
            return timestamp_filter.filter_traces_contained(log, dt1, dt2, parameters=properties)
        elif mode == "traces_intersecting":
            return timestamp_filter.filter_traces_intersecting(log, dt1, dt2, parameters=properties)
        else:
            if constants.SHOW_INTERNAL_WARNINGS:
                warnings.warn('mode provided: ' + mode + ' is not recognized; original log returned!')
            return log
    else:
        from pm4py.algo.filtering.log.timestamp import timestamp_filter
        if mode == "events":
            return timestamp_filter.apply_events(log, dt1, dt2, parameters=properties)
        elif mode == "traces_contained":
            return timestamp_filter.filter_traces_contained(log, dt1, dt2, parameters=properties)
        elif mode == "traces_intersecting":
            return timestamp_filter.filter_traces_intersecting(log, dt1, dt2, parameters=properties)
        else:
            if constants.SHOW_INTERNAL_WARNINGS:
                warnings.warn('mode provided: ' + mode + ' is not recognized; original log returned!')
            return log


def filter_between(log: Union[EventLog, pd.DataFrame], act1: Union[str, List[str]], act2: Union[str, List[str]], activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> Union[EventLog, pd.DataFrame]:
    """
    Finds all the sub-cases leading from an event with activity "act1" to an event with activity "act2" in the log,
    and returns a log containing only them.

    Example:

    Log
    A B C D E F
    A B E F C
    A B F C B C B E F C

    act1 = B
    act2 = C

    Returned sub-cases:
    B C (from the first case)
    B E F C (from the second case)
    B F C (from the third case)
    B C (from the third case)
    B E F C (from the third case)

    :param log: event log / Pandas dataframe
    :param act1: source activity  (or collection of activities)
    :param act2: target activity  (or collection of activities)
    :param activity_key: attribute to be used for the activity
    :param timestamp_key: attribute to be used for the timestamp
    :param case_id_key: attribute to be used as case identifier
    :rtype: ``Union[EventLog, pd.DataFrame]``

    .. code-block:: python3

        import pm4py

        filtered_dataframe = pm4py.filter_between(dataframe, 'A', 'D', activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
    """
    __event_log_deprecation_warning(log)

    parameters = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
    if check_is_pandas_dataframe(log):
        check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
        from pm4py.algo.filtering.pandas.between import between_filter
        return between_filter.apply(log, act1, act2, parameters=parameters)
    else:
        from pm4py.algo.filtering.log.between import between_filter
        return between_filter.apply(log, act1, act2, parameters=parameters)


def filter_case_size(log: Union[EventLog, pd.DataFrame], min_size: int, max_size: int, case_id_key: str = "case:concept:name") -> Union[EventLog, pd.DataFrame]:
    """
    Filters the event log, keeping the cases having a length (number of events) included between min_size
    and max_size

    :param log: event log / Pandas dataframe
    :param min_size: minimum allowed number of events
    :param max_size: maximum allowed number of events
    :param case_id_key: attribute to be used as case identifier
    :rtype: ``Union[EventLog, pd.DataFrame]``

    .. code-block:: python3

        import pm4py

        filtered_dataframe = pm4py.filter_case_size(dataframe, 5, 10, case_id_key='case:concept:name')
    """
    __event_log_deprecation_warning(log)

    parameters = get_properties(log, case_id_key=case_id_key)
    if check_is_pandas_dataframe(log):
        check_pandas_dataframe_columns(log, case_id_key=case_id_key)
        from pm4py.algo.filtering.pandas.cases import case_filter
        case_id = parameters[
            constants.PARAMETER_CONSTANT_CASEID_KEY] if constants.PARAMETER_CONSTANT_CASEID_KEY in parameters else constants.CASE_CONCEPT_NAME
        return case_filter.filter_on_case_size(log, case_id, min_size, max_size)
    else:
        from pm4py.algo.filtering.log.cases import case_filter
        return case_filter.filter_on_case_size(log, min_size, max_size)


def filter_case_performance(log: Union[EventLog, pd.DataFrame], min_performance: float, max_performance: float, timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> Union[EventLog, pd.DataFrame]:
    """
    Filters the event log, keeping the cases having a duration (the timestamp of the last event minus the timestamp
    of the first event) included between min_performance and max_performance

    :param log: event log / Pandas dataframe
    :param min_performance: minimum allowed case duration
    :param max_performance: maximum allowed case duration
    :param timestamp_key: attribute to be used for the timestamp
    :param case_id_key: attribute to be used as case identifier
    :rtype: ``Union[EventLog, pd.DataFrame]``

    .. code-block:: python3

        import pm4py

        filtered_dataframe = pm4py.filter_case_performance(dataframe, 3600.0, 86400.0, timestamp_key='time:timestamp', case_id_key='case:concept:name')
    """
    __event_log_deprecation_warning(log)

    parameters = get_properties(log, timestamp_key=timestamp_key, case_id_key=case_id_key)
    if check_is_pandas_dataframe(log):
        check_pandas_dataframe_columns(log, timestamp_key=timestamp_key, case_id_key=case_id_key)
        from pm4py.algo.filtering.pandas.cases import case_filter
        return case_filter.filter_case_performance(log, min_performance, max_performance, parameters=parameters)
    else:
        from pm4py.algo.filtering.log.cases import case_filter
        return case_filter.filter_case_performance(log, min_performance, max_performance, parameters=parameters)


def filter_activities_rework(log: Union[EventLog, pd.DataFrame], activity: str, min_occurrences: int = 2, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> Union[EventLog, pd.DataFrame]:
    """
    Filters the event log, keeping the cases where the specified activity occurs at least min_occurrences times.

    :param log: event log / Pandas dataframe
    :param activity: activity
    :param min_occurrences: minimum desidered number of occurrences
    :param activity_key: attribute to be used for the activity
    :param timestamp_key: attribute to be used for the timestamp
    :param case_id_key: attribute to be used as case identifier
    :rtype: ``Union[EventLog, pd.DataFrame]``

    .. code-block:: python3

        import pm4py

        filtered_dataframe = pm4py.filter_activities_rework(dataframe, 'Approve Order', 2, activity_key='concept:name', timestamp_key='time:timestamp', case_id_key='case:concept:name')
    """
    __event_log_deprecation_warning(log)

    parameters = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
    parameters["min_occurrences"] = min_occurrences
    if check_is_pandas_dataframe(log):
        check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
        from pm4py.algo.filtering.pandas.rework import rework_filter
        return rework_filter.apply(log, activity, parameters=parameters)
    else:
        from pm4py.algo.filtering.log.rework import rework_filter
        return rework_filter.apply(log, activity, parameters=parameters)


def filter_paths_performance(log: Union[EventLog, pd.DataFrame], path: Tuple[str, str], min_performance: float, max_performance: float, keep=True, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> Union[EventLog, pd.DataFrame]:
    """
    Filters the event log, either:
    - (keep=True) keeping the cases having the specified path (tuple of 2 activities) with a duration included between min_performance and max_performance
    - (keep=False) discarding the cases having the specified path with a duration included between min_performance and max_performance

    :param log: event log / Pandas dataframe
    :param path: tuple of two activities (source_activity, target_activity)
    :param min_performance: minimum allowed performance (of the path)
    :param max_performance: maximum allowed performance (of the path)
    :param keep: keep/discard the cases having the specified path with a duration included between min_performance and max_performance
    :param activity_key: attribute to be used for the activity
    :param timestamp_key: attribute to be used for the timestamp
    :param case_id_key: attribute to be used as case identifier
    :rtype: ``Union[EventLog, pd.DataFrame]``

    .. code-block:: python3

        import pm4py

        filtered_dataframe = pm4py.filter_paths_performance(dataframe, ('A', 'D'), 3600.0, 86400.0, activity_key='concept:name', timestamp_key='time:timestamp', case_id_key='case:concept:name')
    """
    __event_log_deprecation_warning(log)

    parameters = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
    parameters["positive"] = keep
    parameters["min_performance"] = min_performance
    parameters["max_performance"] = max_performance
    path = tuple(path)
    if check_is_pandas_dataframe(log):
        check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
        from pm4py.algo.filtering.pandas.paths import paths_filter
        return paths_filter.apply_performance(log, path, parameters=parameters)
    else:
        from pm4py.algo.filtering.log.paths import paths_filter
        return paths_filter.apply_performance(log, path, parameters=parameters)


def filter_variants_top_k(log: Union[EventLog, pd.DataFrame], k: int, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> Union[EventLog, pd.DataFrame]:
    """
    Keeps the top-k variants of the log

    :param log: event log / Pandas dataframe
    :param k: number of variants that should be kept
    :param activity_key: attribute to be used for the activity
    :param timestamp_key: attribute to be used for the timestamp
    :param case_id_key: attribute to be used as case identifier
    :rtype: ``Union[EventLog, pd.DataFrame]``

    .. code-block:: python3

        import pm4py

        filtered_dataframe = pm4py.filter_variants_top_k(dataframe, 5, activity_key='concept:name', timestamp_key='time:timestamp', case_id_key='case:concept:name')
    """
    __event_log_deprecation_warning(log)

    parameters = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
    if check_is_pandas_dataframe(log):
        check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
        from pm4py.algo.filtering.pandas.variants import variants_filter
        return variants_filter.filter_variants_top_k(log, k, parameters=parameters)
    else:
        from pm4py.algo.filtering.log.variants import variants_filter
        return variants_filter.filter_variants_top_k(log, k, parameters=parameters)


def filter_variants_by_coverage_percentage(log: Union[EventLog, pd.DataFrame], min_coverage_percentage: float, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> Union[EventLog, pd.DataFrame]:
    """
    Filters the variants of the log by a coverage percentage
    (e.g., if min_coverage_percentage=0.4, and we have a log with 1000 cases,
    of which 500 of the variant 1, 400 of the variant 2, and 100 of the variant 3,
    the filter keeps only the traces of variant 1 and variant 2).

    :param log: event log / Pandas dataframe
    :param min_coverage_percentage: minimum allowed percentage of coverage
    :param activity_key: attribute to be used for the activity
    :param timestamp_key: attribute to be used for the timestamp
    :param case_id_key: attribute to be used as case identifier
    :rtype: ``Union[EventLog, pd.DataFrame]``

    .. code-block:: python3

        import pm4py

        filtered_dataframe = pm4py.filter_variants_by_coverage_percentage(dataframe, 0.1, activity_key='concept:name', timestamp_key='time:timestamp', case_id_key='case:concept:name')
    """
    __event_log_deprecation_warning(log)

    parameters = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
    if check_is_pandas_dataframe(log):
        check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
        from pm4py.algo.filtering.pandas.variants import variants_filter
        return variants_filter.filter_variants_by_coverage_percentage(log, min_coverage_percentage, parameters=parameters)
    else:
        from pm4py.algo.filtering.log.variants import variants_filter
        return variants_filter.filter_variants_by_coverage_percentage(log, min_coverage_percentage, parameters=parameters)


def filter_variants_by_maximum_coverage_percentage(log: Union[EventLog, pd.DataFrame], max_coverage_percentage: float, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> Union[EventLog, pd.DataFrame]:
    """
    Filters the variants of the log by a maximum coverage percentage
    (e.g., if max_coverage_percentage=0.4, and we have a log with 1000 cases,
    of which 500 of the variant 1, 400 of the variant 2, and 100 of the variant 3,
    the filter keeps only the traces of variant 2 and variant 3).

    :param log: event log / Pandas dataframe
    :param max_coverage_percentage: maximum allowed percentage of coverage
    :param activity_key: attribute to be used for the activity
    :param timestamp_key: attribute to be used for the timestamp
    :param case_id_key: attribute to be used as case identifier
    :rtype: ``Union[EventLog, pd.DataFrame]``

    .. code-block:: python3

        import pm4py

        filtered_dataframe = pm4py.filter_variants_by_maximum_coverage_percentage(dataframe, 0.1, activity_key='concept:name', timestamp_key='time:timestamp', case_id_key='case:concept:name')
    """
    if type(log) not in [pd.DataFrame, EventLog, EventStream]: raise Exception("the method can be applied only to a traditional event log!")
    __event_log_deprecation_warning(log)

    parameters = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
    if check_is_pandas_dataframe(log):
        check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
        from pm4py.algo.filtering.pandas.variants import variants_filter
        return variants_filter.filter_variants_by_maximum_coverage_percentage(log, max_coverage_percentage, parameters=parameters)
    else:
        from pm4py.algo.filtering.log.variants import variants_filter
        return variants_filter.filter_variants_by_maximum_coverage_percentage(log, max_coverage_percentage, parameters=parameters)


def filter_prefixes(log: Union[EventLog, pd.DataFrame], activity: str, strict=True, first_or_last="first", activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> Union[EventLog, pd.DataFrame]:
    """
    Filters the log, keeping the prefixes to a given activity. E.g., for a log with traces:

    A,B,C,D
    A,B,Z,A,B,C,D
    A,B,C,D,C,E,C,F

    The prefixes to "C" are respectively:

    A,B
    A,B,Z,A,B
    A,B

    :param log: event log / Pandas dataframe
    :param activity: target activity of the filter
    :param strict: applies the filter strictly (cuts the occurrences of the selected activity).
    :param first_or_last: decides if the first or last occurrence of an activity should be selected as baseline for the filter.
    :param activity_key: attribute to be used for the activity
    :param timestamp_key: attribute to be used for the timestamp
    :param case_id_key: attribute to be used as case identifier
    :rtype: ``Union[EventLog, pd.DataFrame]``

    .. code-block:: python3

        import pm4py

        filtered_dataframe = pm4py.filter_prefixes(dataframe, 'Act. C', activity_key='concept:name', timestamp_key='time:timestamp', case_id_key='case:concept:name')
    """
    __event_log_deprecation_warning(log)

    parameters = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
    parameters["strict"] = strict
    parameters["first_or_last"] = first_or_last

    if check_is_pandas_dataframe(log):
        check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
        from pm4py.algo.filtering.pandas.prefixes import prefix_filter
        return prefix_filter.apply(log, activity, parameters=parameters)
    else:
        from pm4py.algo.filtering.log.prefixes import prefix_filter
        return prefix_filter.apply(log, activity, parameters=parameters)


def filter_suffixes(log: Union[EventLog, pd.DataFrame], activity: str, strict=True, first_or_last="first", activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> Union[EventLog, pd.DataFrame]:
    """
    Filters the log, keeping the suffixes from a given activity. E.g., for a log with traces:

    A,B,C,D
    A,B,Z,A,B,C,D
    A,B,C,D,C,E,C,F

    The suffixes from "C" are respectively:

    D
    D
    D,C,E,C,F

    :param log: event log / Pandas dataframe
    :param activity: target activity of the filter
    :param strict: applies the filter strictly (cuts the occurrences of the selected activity).
    :param first_or_last: decides if the first or last occurrence of an activity should be selected as baseline for the filter.
    :param activity_key: attribute to be used for the activity
    :param timestamp_key: attribute to be used for the timestamp
    :param case_id_key: attribute to be used as case identifier
    :rtype: ``Union[EventLog, pd.DataFrame]``

    .. code-block:: python3

        import pm4py

        filtered_dataframe = pm4py.filter_prefixes(dataframe, 'Act. C', activity_key='concept:name', timestamp_key='time:timestamp', case_id_key='case:concept:name')
    """
    __event_log_deprecation_warning(log)

    parameters = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
    parameters["strict"] = strict
    parameters["first_or_last"] = first_or_last

    if check_is_pandas_dataframe(log):
        check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
        from pm4py.algo.filtering.pandas.suffixes import suffix_filter
        return suffix_filter.apply(log, activity, parameters=parameters)
    else:
        from pm4py.algo.filtering.log.suffixes import suffix_filter
        return suffix_filter.apply(log, activity, parameters=parameters)


def filter_ocel_event_attribute(ocel: OCEL, attribute_key: str, attribute_values: Collection[Any], positive: bool = True) -> OCEL:
    """
    Filters the object-centric event log on the provided event attributes values

    :param ocel: object-centric event log
    :param attribute_key: attribute at the event level
    :param attribute_values: collection of attribute values
    :param positive: decides if the values should be kept (positive=True) or removed (positive=False)
    :rtype: ``OCEL``

    .. code-block:: python3

        import pm4py

        filtered_ocel = pm4py.filter_ocel_event_attribute(ocel, 'ocel:activity', ['A', 'B', 'D'])
    """
    from pm4py.algo.filtering.ocel import event_attributes

    return event_attributes.apply(ocel, attribute_values, parameters={event_attributes.Parameters.ATTRIBUTE_KEY: attribute_key, event_attributes.Parameters.POSITIVE: positive})


def filter_ocel_object_attribute(ocel: OCEL, attribute_key: str, attribute_values: Collection[Any], positive: bool = True) -> OCEL:
    """
    Filters the object-centric event log on the provided object attributes values

    :param ocel: object-centric event log
    :param attribute_key: attribute at the event level
    :param attribute_values: collection of attribute values
    :param positive: decides if the values should be kept (positive=True) or removed (positive=False)
    :rtype: ``OCEL``

    .. code-block:: python3

        import pm4py

        filtered_ocel = pm4py.filter_ocel_object_attribute(ocel, 'ocel:type', ['order'])
    """
    from pm4py.algo.filtering.ocel import object_attributes

    return object_attributes.apply(ocel, attribute_values, parameters={object_attributes.Parameters.ATTRIBUTE_KEY: attribute_key, object_attributes.Parameters.POSITIVE: positive})


def filter_ocel_object_types_allowed_activities(ocel: OCEL, correspondence_dict: Dict[str, Collection[str]]) -> OCEL:
    """
    Filters an object-centric event log keeping only the specified object types
    with the specified activity set (filters out the rest).

    :param ocel: object-centric event log
    :param correspondence_dict: dictionary containing, for every object type of interest, a collection of allowed activities. Example: {"order": ["Create Order"], "element": ["Create Order", "Create Delivery"]}
    :rtype: ``OCEL``

    .. code-block:: python3

        import pm4py

        filtered_ocel = pm4py.filter_ocel_object_types_allowed_activities(ocel, {'order': ['create order', 'pay order'], 'item})
    """
    from pm4py.algo.filtering.ocel import activity_type_matching

    return activity_type_matching.apply(ocel, correspondence_dict)


def filter_ocel_object_per_type_count(ocel: OCEL, min_num_obj_type: Dict[str, int]) -> OCEL:
    """
    Filters the events of the object-centric logs which are related to at least
    the specified amount of objects per type.

    E.g. pm4py.filter_object_per_type_count(ocel, {"order": 1, "element": 2})

    Would keep the following events:

      ocel:eid ocel:timestamp ocel:activity ocel:type:element ocel:type:order
    0       e1     1980-01-01  Create Order  [i4, i1, i3, i2]            [o1]
    1      e11     1981-01-01  Create Order          [i6, i5]            [o2]
    2      e14     1981-01-04  Create Order          [i8, i7]            [o3]

    :param ocel: object-centric event log
    :param min_num_obj_type: minimum number of objects per type
    :rtype: ``OCEL``

    .. code-block:: python3

        import pm4py

        filtered_ocel = pm4py.filter_ocel_object_per_type_count(ocel, {'order': 1, 'element': 2})
    """
    from pm4py.algo.filtering.ocel import objects_ot_count

    return objects_ot_count.apply(ocel, min_num_obj_type)


def filter_ocel_start_events_per_object_type(ocel: OCEL, object_type: str) -> OCEL:
    """
    Filters the events in which a new object for the given object type is spawn.
    (E.g. an event with activity "Create Order" might spawn new orders).

    :param ocel: object-centric event log
    :param object_type: object type to consider
    :rtype: ``OCEL``

    .. code-block:: python3

        import pm4py

        filtered_ocel = pm4py.filter_ocel_start_events_per_object_type(ocel, 'delivery')
    """
    from pm4py.algo.filtering.ocel import ot_endpoints
    return ot_endpoints.filter_start_events_per_object_type(ocel, object_type)


def filter_ocel_end_events_per_object_type(ocel: OCEL, object_type: str) -> OCEL:
    """
    Filters the events in which an object for the given object type terminates its lifecycle.
    (E.g. an event with activity "Pay Order" might terminate an order).

    :param ocel: object-centric event log
    :param object_type: object type to consider
    :rtype: ``OCEL``

    .. code-block:: python3

        import pm4py

        filtered_ocel = pm4py.filter_ocel_end_events_per_object_type(ocel, 'delivery')
    """
    from pm4py.algo.filtering.ocel import ot_endpoints
    return ot_endpoints.filter_end_events_per_object_type(ocel, object_type)


def filter_ocel_events_timestamp(ocel: OCEL, min_timest: Union[datetime.datetime, str], max_timest: Union[datetime.datetime, str], timestamp_key: str = "ocel:timestamp") -> OCEL:
    """
    Filters the object-centric event log keeping events in the provided timestamp range

    :param ocel: object-centric event log
    :param min_timest: left extreme of the allowed timestamp interval (provided in the format: YYYY-mm-dd HH:MM:SS)
    :param max_timest: right extreme of the allowed timestamp interval (provided in the format: YYYY-mm-dd HH:MM:SS)
    :param timestamp_key: the attribute to use as timestamp (default: ocel:timestamp)
    :rtype: ``OCEL``

    .. code-block:: python3

        import pm4py

        filtered_ocel = pm4py.filter_ocel_events_timestamp(ocel, '1990-01-01 00:00:00', '2010-01-01 00:00:00')
    """
    from pm4py.algo.filtering.ocel import event_attributes
    return event_attributes.apply_timestamp(ocel, min_timest, max_timest, parameters={"pm4py:param:timestamp_key": timestamp_key})


def filter_four_eyes_principle(log: Union[EventLog, pd.DataFrame], activity1: str, activity2: str, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name", resource_key: str = "org:resource") -> Union[EventLog, pd.DataFrame]:
    """
    Filter the cases of the log which violates the four eyes principle on the provided activities.

    :param log: event log
    :param activity1: first activity
    :param activity2: second activity
    :param activity_key: attribute to be used for the activity
    :param timestamp_key: attribute to be used for the timestamp
    :param case_id_key: attribute to be used as case identifier
    :param resource_key: attribute to be used as resource
    :rtype: ``Union[EventLog, pd.DataFrame]``

    .. code-block:: python3

        import pm4py

        filtered_dataframe = pm4py.filter_four_eyes_principle(dataframe, 'Act. A', 'Act. B', activity_key='concept:name', resource_key='org:resource', timestamp_key='time:timestamp', case_id_key='case:concept:name')
    """
    __event_log_deprecation_warning(log)

    properties = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key, resource_key=resource_key)
    properties["positive"] = True

    if check_is_pandas_dataframe(log):
        check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)

        from pm4py.algo.filtering.pandas.ltl import ltl_checker
        return ltl_checker.four_eyes_principle(log, activity1, activity2, parameters=properties)
    else:
        from pm4py.algo.filtering.log.ltl import ltl_checker
        return ltl_checker.four_eyes_principle(log, activity1, activity2, parameters=properties)


def filter_activity_done_different_resources(log: Union[EventLog, pd.DataFrame], activity: str, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name", resource_key: str = "org:resource") -> Union[EventLog, pd.DataFrame]:
    """
    Filters the cases where an activity is repeated by different resources.

    :param log: event log
    :param activity: activity to consider
    :param activity_key: attribute to be used for the activity
    :param timestamp_key: attribute to be used for the timestamp
    :param case_id_key: attribute to be used as case identifier
    :param resource_key: attribute to be used as resource
    :rtype: ``Union[EventLog, pd.DataFrame]``

    .. code-block:: python3

        import pm4py

        filtered_dataframe = pm4py.filter_activity_done_different_resources(dataframe, 'Act. A', activity_key='concept:name', resource_key='org:resource', timestamp_key='time:timestamp', case_id_key='case:concept:name')
    """
    __event_log_deprecation_warning(log)

    properties = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key, resource_key=resource_key)

    if check_is_pandas_dataframe(log):
        check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)

        from pm4py.algo.filtering.pandas.ltl import ltl_checker
        return ltl_checker.attr_value_different_persons(log, activity, parameters=properties)
    else:
        from pm4py.algo.filtering.log.ltl import ltl_checker
        return ltl_checker.attr_value_different_persons(log, activity, parameters=properties)


def filter_trace_segments(log: Union[EventLog, pd.DataFrame], admitted_traces: List[List[str]], positive: bool = True, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> Union[EventLog, pd.DataFrame]:
    """
    Filters an event log on a set of traces. A trace is a sequence of activities and "...", in which:
    - a "..." before an activity tells that other activities can precede the given activity
    - a "..." after an activity tells that other activities can follow the given activity

    For example:
    - pm4py.filter_trace_segments(log, [["A", "B"]]) <- filters only the cases of the event log having exactly the process variant A,B
    - pm4py.filter_trace_segments(log, [["...", "A", "B"]]) <- filters only the cases of the event log ending with the activities A,B
    - pm4py.filter_trace_segments(log, [["A", "B", "..."]]) <- filters only the cases of the event log starting with the activities A,B
    - pm4py.filter_trace_segments(log, [["...", "A", "B", "C", "..."], ["...", "D", "E", "F", "..."]]
                                <- filters only the cases of the event log in which at any point
                                    there is A followed by B followed by C, and in which at any other point there is
                                    D followed by E followed by F

    :param log: event log / Pandas dataframe
    :param admitted_traces: collection of traces admitted from the filter (with the aforementioned criteria)
    :param positive: (boolean) indicates if the filter should keep/discard the cases satisfying the filter
    :param activity_key: attribute to be used for the activity
    :param timestamp_key: attribute to be used for the timestamp
    :param case_id_key: attribute to be used as case identifier
    :rtype: ``Union[EventLog, pd.DataFrame]``

    .. code-block:: python3

        import pm4py

        log = pm4py.read_xes("tests/input_data/running-example.xes")

        filtered_log = pm4py.filter_trace_segments(log, [["...", "check ticket", "decide", "reinitiate request", "..."]])
        print(filtered_log)
    """
    __event_log_deprecation_warning(log)

    parameters = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
    parameters["positive"] = positive

    if check_is_pandas_dataframe(log):
        check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key)
        from pm4py.algo.filtering.pandas.traces import trace_filter
        return trace_filter.apply(log, admitted_traces, parameters=parameters)
    else:
        from pm4py.algo.filtering.log.traces import trace_filter
        return trace_filter.apply(log, admitted_traces, parameters=parameters)


def filter_ocel_object_types(ocel: OCEL, obj_types: Collection[str], positive: bool = True, level: int = 1) -> OCEL:
    """
    Filters the object types of an object-centric event log.

    :param ocel: object-centric event log
    :param obj_types: object types to keep/remove
    :param positive: boolean value (True=keep, False=remove)
    :param level: recursively expand the set of object identifiers until the specified level
    
    :rtype: ``OCEL``

    .. code-block:: python3

        import pm4py

        ocel = pm4py.read_ocel('log.jsonocel')
        filtered_ocel = pm4py.filter_ocel_object_types(ocel, ['order'])
    """
    from copy import copy
    from pm4py.objects.ocel.util import filtering_utils
    if level == 1:
        filtered_ocel = copy(ocel)
        if positive:
            filtered_ocel.objects = filtered_ocel.objects[filtered_ocel.objects[filtered_ocel.object_type_column].isin(obj_types)]
        else:
            filtered_ocel.objects = filtered_ocel.objects[~filtered_ocel.objects[filtered_ocel.object_type_column].isin(obj_types)]
        return filtering_utils.propagate_object_filtering(filtered_ocel)
    else:
        object_ids = pandas_utils.format_unique(ocel.objects[ocel.objects[ocel.object_type_column].isin(obj_types)][ocel.object_id_column].unique())
        return filter_ocel_objects(ocel, object_ids, level=level, positive=positive)


def filter_ocel_objects(ocel: OCEL, object_identifiers: Collection[str], positive: bool = True, level: int = 1) -> OCEL:
    """
    Filters the object identifiers of an object-centric event log.

    :param ocel: object-centric event log
    :param object_identifiers: object identifiers to keep/remove
    :param positive: boolean value (True=keep, False=remove)
    :param level: recursively expand the set of object identifiers until the specified level
    :rtype: ``OCEL``

    .. code-block:: python3

        import pm4py

        ocel = pm4py.read_ocel('log.jsonocel')
        filtered_ocel = pm4py.filter_ocel_objects(ocel, ['o1'], level=1)
    """
    object_identifiers = set(object_identifiers)
    if level > 1:
        ev_rel_obj = ocel.relations.groupby(ocel.event_id_column)[ocel.object_id_column].agg(list).to_dict()
        objects_ids = ocel.objects[ocel.object_id_column].to_numpy().tolist()
        graph = {o: set() for o in objects_ids}
        for ev in ev_rel_obj:
            rel_obj = ev_rel_obj[ev]
            for o1 in rel_obj:
                for o2 in rel_obj:
                    if o1 != o2:
                        graph[o1].add(o2)
        while level > 1:
            curr = list(object_identifiers)
            for el in curr:
                for el2 in graph[el]:
                    object_identifiers.add(el2)
            level = level - 1
    from copy import copy
    from pm4py.objects.ocel.util import filtering_utils
    filtered_ocel = copy(ocel)
    if positive:
        filtered_ocel.objects = filtered_ocel.objects[filtered_ocel.objects[filtered_ocel.object_id_column].isin(object_identifiers)]
    else:
        filtered_ocel.objects = filtered_ocel.objects[~filtered_ocel.objects[filtered_ocel.object_id_column].isin(object_identifiers)]
    return filtering_utils.propagate_object_filtering(filtered_ocel)


def filter_ocel_events(ocel: OCEL, event_identifiers: Collection[str], positive: bool = True) -> OCEL:
    """
    Filters the event identifiers of an object-centric event log.

    :param ocel: object-centric event log
    :param event_identifiers: event identifiers to keep/remove
    :param positive: boolean value (True=keep, False=remove)
    :rtype: ``OCEL``

    .. code-block:: python3

        import pm4py

        ocel = pm4py.read_ocel('log.jsonocel')
        filtered_ocel = pm4py.filter_ocel_events(ocel, ['e1'])
    """
    from copy import copy
    from pm4py.objects.ocel.util import filtering_utils
    filtered_ocel = copy(ocel)
    if positive:
        filtered_ocel.events = filtered_ocel.events[filtered_ocel.events[filtered_ocel.event_id_column].isin(event_identifiers)]
    else:
        filtered_ocel.events = filtered_ocel.events[~filtered_ocel.events[filtered_ocel.event_id_column].isin(event_identifiers)]
    return filtering_utils.propagate_event_filtering(filtered_ocel)


def filter_ocel_cc_object(ocel: OCEL, object_id: str, conn_comp: Optional[List[List[str]]] = None, return_conn_comp: bool = False) -> Union[OCEL, Tuple[OCEL, List[List[str]]]]:
    """
    Returns the connected component of the object-centric event log
    to which the object with the provided identifier belongs.

    :param ocel: object-centric event log
    :param object_id: object identifier
    :param conn_comp: (optional) connected components of the objects of the OCEL
    :param return_conn_comp: if True, returns the computed connected components of the OCEL
    :rtype: ``Union[OCEL, Tuple[OCEL, List[List[str]]]]``

    .. code-block:: python3

        import pm4py

        ocel = pm4py.read_ocel('log.jsonocel')
        filtered_ocel = pm4py.filter_ocel_cc_object(ocel, 'order1')
    """
    if conn_comp is None:
        from pm4py.algo.transformation.ocel.graphs import object_interaction_graph

        g0 = object_interaction_graph.apply(ocel)
        g = nx_utils.Graph()

        for edge in g0:
            g.add_edge(edge[0], edge[1])

        conn_comp = list(nx_utils.connected_components(g))

    for cc in conn_comp:
        if object_id in cc:
            if return_conn_comp:
                return filter_ocel_objects(ocel, cc), conn_comp
            else:
                return filter_ocel_objects(ocel, cc)

    if return_conn_comp:
        return filter_ocel_objects(ocel, [object_id]), conn_comp
    else:
        return filter_ocel_objects(ocel, [object_id])


def filter_ocel_cc_length(ocel: OCEL, min_cc_length: int, max_cc_length: int) -> OCEL:
    """
    Keeps only the objects in an OCEL belonging to a connected component with a length
    falling in a specified range

    Paper:
    Adams, Jan Niklas, et al. "Defining cases and variants for object-centric event data." 2022 4th International Conference on Process Mining (ICPM). IEEE, 2022.

    :param ocel: object-centric event log
    :param min_cc_length: minimum allowed length for the connected component
    :param max_cc_length: maximum allowed length for the connected component
    :rtype: ``OCEL``

    .. code-block:: python3

        import pm4py

        ocel = pm4py.read_ocel('log.jsonocel')
        filtered_ocel = pm4py.filter_ocel_cc_length(ocel, 2, 10)
    """
    from pm4py.algo.transformation.ocel.graphs import object_interaction_graph

    g0 = object_interaction_graph.apply(ocel)
    g = nx_utils.Graph()

    for edge in g0:
        g.add_edge(edge[0], edge[1])

    conn_comp = list(nx_utils.connected_components(g))
    conn_comp = [x for x in conn_comp if min_cc_length <= len(x) <= max_cc_length]
    objs = [y for x in conn_comp for y in x]

    return filter_ocel_objects(ocel, objs)


def filter_ocel_cc_otype(ocel: OCEL, otype: str, positive: bool = True) -> OCEL:
    """
    Filters the objects belonging to the connected components having at least an object
    of the provided object type.

    Paper:
    Adams, Jan Niklas, et al. "Defining cases and variants for object-centric event data." 2022 4th International Conference on Process Mining (ICPM). IEEE, 2022.

    :param ocel: object-centric event log
    :param otype: object type
    :param positive: boolean that keeps or discards the objects of these components
    :rtype: ``OCEL``

    .. code-block:: python3

        import pm4py

        ocel = pm4py.read_ocel('log.jsonocel')
        filtered_ocel = pm4py.filter_ocel_cc_otype(ocel, 'order')
    """
    if positive:
        objs = set(ocel.objects[ocel.objects[ocel.object_type_column] == otype][ocel.object_id_column])
    else:
        objs = set(ocel.objects[~(ocel.objects[ocel.object_type_column] == otype)][ocel.object_id_column])

    from pm4py.algo.transformation.ocel.graphs import object_interaction_graph

    g0 = object_interaction_graph.apply(ocel)
    g = nx_utils.Graph()

    for edge in g0:
        g.add_edge(edge[0], edge[1])

    conn_comp = list(nx_utils.connected_components(g))
    conn_comp = [x for x in conn_comp if len(set(x).intersection(objs)) > 0]

    objs = [y for x in conn_comp for y in x]

    return filter_ocel_objects(ocel, objs)


def filter_ocel_cc_activity(ocel: OCEL, activity: str) -> OCEL:
    """
    Filters the objects belonging to the connected components having at least an event
    with the provided activity.

    Paper:
    Adams, Jan Niklas, et al. "Defining cases and variants for object-centric event data." 2022 4th International Conference on Process Mining (ICPM). IEEE, 2022.

    :param ocel: object-centric event log
    :param activity: activity
    :rtype: ``OCEL``

    .. code-block:: python3

        import pm4py

        ocel = pm4py.read_ocel('log.jsonocel')
        filtered_ocel = pm4py.filter_ocel_cc_activity(ocel, 'Create Order')
    """
    evs = ocel.events[ocel.events[ocel.event_activity] == activity][ocel.event_id_column].to_numpy().tolist()
    objs = pandas_utils.format_unique(ocel.relations[ocel.relations[ocel.event_id_column].isin(evs)][ocel.object_id_column].unique())

    from pm4py.algo.transformation.ocel.graphs import object_interaction_graph

    g0 = object_interaction_graph.apply(ocel)
    g = nx_utils.Graph()

    for edge in g0:
        g.add_edge(edge[0], edge[1])

    conn_comp = list(nx_utils.connected_components(g))
    conn_comp = [x for x in conn_comp if len(set(x).intersection(objs)) > 0]

    objs = [y for x in conn_comp for y in x]

    return filter_ocel_objects(ocel, objs)