File size: 9,215 Bytes
e60e568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
'''
    This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de).

    PM4Py is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    PM4Py is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with PM4Py.  If not, see <https://www.gnu.org/licenses/>.
'''
import numpy as np

from pm4py.objects.random_variables.constant0.random_variable import Constant0
from pm4py.objects.random_variables.deterministic.random_variable import Deterministic
from pm4py.objects.random_variables.exponential.random_variable import Exponential
from pm4py.objects.random_variables.normal.random_variable import Normal
from pm4py.objects.random_variables.uniform.random_variable import Uniform
from pm4py.objects.random_variables.lognormal.random_variable import LogNormal
from pm4py.objects.random_variables.gamma.random_variable import Gamma


class RandomVariable(object):
    def __init__(self):
        self.random_variable = None

    def read_from_string(self, distribution_type, distribution_parameters):
        """
        Read the random variable from string

        Parameters
        -----------
        distribution_type
            Distribution type
        distribution_parameters
            Distribution parameters splitted by ;
        """
        if distribution_type == "NORMAL":
            self.random_variable = Normal()
            self.random_variable.read_from_string(distribution_parameters)
        elif distribution_type == "UNIFORM":
            self.random_variable = Uniform()
            self.random_variable.read_from_string(distribution_parameters)
        elif distribution_type == "EXPONENTIAL":
            self.random_variable = Exponential()
            self.random_variable.read_from_string(distribution_parameters)
        elif distribution_type == "LOGNORMAL":
            self.random_variable = LogNormal()
            self.random_variable.read_from_string(distribution_parameters)
        elif distribution_type == "GAMMA":
            self.random_variable = Gamma()
            self.random_variable.read_from_string(distribution_parameters)
        elif distribution_type == "DETERMINISTIC":
            self.random_variable = Deterministic()
            self.random_variable.read_from_string(distribution_parameters)
        elif distribution_type == "IMMEDIATE":
            self.random_variable = Constant0()

    def get_distribution_type(self):
        """
        Get current distribution type

        Returns
        -----------
        distribution_type
            String representing the distribution type
        """
        if self.random_variable is not None:
            return self.random_variable.get_distribution_type()

    def get_transition_type(self):
        """
        Get the type of transition associated to the current distribution

        Returns
        -----------
        transition_type
            String representing the type of the transition
        """
        if self.random_variable is not None:
            return self.random_variable.get_transition_type()

    def get_distribution_parameters(self):
        """
        Get a string representing distribution parameters

        Returns
        -----------
        distribution_parameters
            String representing distribution parameters
        """
        if self.random_variable is not None:
            return self.random_variable.get_distribution_parameters()

    def calculate_loglikelihood(self, values):
        """
        Calculate log likelihood

        Parameters
        ------------
        values
            Empirical values to work on

        Returns
        ------------
        likelihood
            Log likelihood that the values follows the distribution
        """
        if self.random_variable is not None:
            return self.random_variable.calculate_loglikelihood(values)

    def calculate_parameters(self, values, parameters=None, force_distribution=None):
        """
        Calculate parameters of the current distribution

        Parameters
        -----------
        values
            Empirical values to work on
        parameters
            Possible parameters of the algorithm
        force_distribution
            If provided, distribution to force usage (e.g. EXPONENTIAL)

        """

        if parameters is None:
            parameters = {}

        debug_mode = parameters["debug"] if "debug" in parameters else False

        if self.random_variable is not None:
            self.random_variable.calculate_parameters(values)
        else:
            norm = Normal()
            unif = Uniform()
            expon = Exponential()
            constant = Constant0()
            lognormal = LogNormal()
            gamma = Gamma()

            if not force_distribution or not force_distribution == "EXPONENTIAL":
                likelihoods = list()
                likelihoods.append([constant, constant.calculate_loglikelihood(values)])
                if force_distribution == "NORMAL" or force_distribution is None:
                    norm.calculate_parameters(values)
                    likelihoods.append([norm, norm.calculate_loglikelihood(values)])
                if force_distribution == "UNIFORM" or force_distribution is None:
                    unif.calculate_parameters(values)
                    likelihoods.append([unif, unif.calculate_loglikelihood(values)])
                if force_distribution == "EXPONENTIAL" or force_distribution is None:
                    expon.calculate_parameters(values)
                    likelihoods.append([expon, expon.calculate_loglikelihood(values)])
                likelihoods = [x for x in likelihoods if str(x[1]) != 'nan']
                likelihoods = sorted(likelihoods, key=lambda x: x[1], reverse=True)

                if debug_mode:
                    print("likelihoods = ", likelihoods)

                self.random_variable = likelihoods[0][0]
            else:
                avg_values = np.average(values)
                if values and avg_values > 0.00000:
                    expon.scale = avg_values
                    self.random_variable = expon
                else:
                    self.random_variable = constant

    def get_value(self):
        """
        Get a random value following the distribution

        Returns
        -----------
        value
            Value obtained following the distribution
        """
        if self.random_variable is not None:
            return self.random_variable.get_value()

    def get_values(self, no_values=400):
        """
        Get some random values following the distribution

        Parameters
        -----------
        no_values
            Number of values to return

        Returns
        ----------
        values
            Values extracted according to the probability distribution
        """
        if self.random_variable is not None:
            return self.random_variable.get_values(no_values=no_values)

    def get_weight(self):
        """
        Getter of weight

        Returns
        ----------
        weight
            Weight of the transition
        """
        if self.random_variable is not None:
            return self.random_variable.get_weight()

    def set_weight(self, weight):
        """
        Setter of the weight

        Parameters
        -----------
        weight
            Weight of the transition
        """
        if self.random_variable is not None:
            self.random_variable.set_weight(weight)

    def get_priority(self):
        """
        Getter of the priority

        Returns
        -----------
        priority
            Priority of the transition
        """
        if self.random_variable is not None:
            return self.random_variable.get_priority()

    def set_priority(self, priority):
        """
        Setter of the priority variable

        Parameters
        ------------
        priority
            Priority of the transition
        """
        if self.random_variable is not None:
            self.random_variable.set_priority(priority)

    def __str__(self):
        """
        Returns a representation of the current object

        Returns
        ----------
        repr
            Representation of the current object
        """
        if self.random_variable is not None:
            return str(self.random_variable)
        else:
            return "UNINITIALIZED"

    def __repr__(self):
        """
        Returns a representation of the current object

        Returns
        ----------
        repr
            Representation of the current object
        """
        if self.random_variable is not None:
            return repr(self.random_variable)
        else:
            return "UNINITIALIZED"