File size: 25,034 Bytes
e60e568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
'''
    This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de).

    PM4Py is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    PM4Py is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with PM4Py.  If not, see <https://www.gnu.org/licenses/>.
'''
__doc__ = """
"""

import datetime
from typing import Optional, Tuple, Any, Collection, Union, List

import pandas as pd

from pm4py.objects.log.obj import EventLog, EventStream, Trace, Event
from pm4py.objects.process_tree.obj import ProcessTree
from pm4py.objects.powl.obj import POWL
from pm4py.objects.ocel.obj import OCEL
from pm4py.util import constants, xes_constants, pandas_utils
import warnings
from pm4py.util.pandas_utils import check_is_pandas_dataframe, check_pandas_dataframe_columns
from pm4py.util.dt_parsing.variants import strpfromiso
import deprecation


INDEX_COLUMN = "@@index"
CASE_INDEX_COLUMN = "@@case_index"


def format_dataframe(df: pd.DataFrame, case_id: str = constants.CASE_CONCEPT_NAME,
                     activity_key: str = xes_constants.DEFAULT_NAME_KEY,
                     timestamp_key: str = xes_constants.DEFAULT_TIMESTAMP_KEY,
                     start_timestamp_key: str = xes_constants.DEFAULT_START_TIMESTAMP_KEY,
                     timest_format: Optional[str] = None) -> pd.DataFrame:
    """
    Give the appropriate format on the dataframe, for process mining purposes

    :param df: Dataframe
    :param case_id: Case identifier column
    :param activity_key: Activity column
    :param timestamp_key: Timestamp column
    :param start_timestamp_key: Start timestamp column
    :param timest_format: Timestamp format that is provided to Pandas
    :rtype: ``pd.DataFrame``

    .. code-block:: python3

        import pandas as pd
        import pm4py

        dataframe = pd.read_csv('event_log.csv')
        dataframe = pm4py.format_dataframe(dataframe, case_id_key='case:concept:name', activity_key='concept:name', timestamp_key='time:timestamp', start_timestamp_key='start_timestamp', timest_format='%Y-%m-%d %H:%M:%S')
    """
    if timest_format is None:
        timest_format = constants.DEFAULT_TIMESTAMP_PARSE_FORMAT

    from pm4py.objects.log.util import dataframe_utils
    if case_id not in df.columns:
        raise Exception(case_id + " column (case ID) is not in the dataframe!")
    if activity_key not in df.columns:
        raise Exception(activity_key + " column (activity) is not in the dataframe!")
    if timestamp_key not in df.columns:
        raise Exception(timestamp_key + " column (timestamp) is not in the dataframe!")
    if case_id != constants.CASE_CONCEPT_NAME:
        if constants.CASE_CONCEPT_NAME in df.columns:
            del df[constants.CASE_CONCEPT_NAME]
        df[constants.CASE_CONCEPT_NAME] = df[case_id]
    if activity_key != xes_constants.DEFAULT_NAME_KEY:
        if xes_constants.DEFAULT_NAME_KEY in df.columns:
            del df[xes_constants.DEFAULT_NAME_KEY]
        df[xes_constants.DEFAULT_NAME_KEY] = df[activity_key]
    if timestamp_key != xes_constants.DEFAULT_TIMESTAMP_KEY:
        if xes_constants.DEFAULT_TIMESTAMP_KEY in df.columns:
            del df[xes_constants.DEFAULT_TIMESTAMP_KEY]
        df[xes_constants.DEFAULT_TIMESTAMP_KEY] = df[timestamp_key]
    # makes sure that the timestamps column are of timestamp type
    df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=timest_format)
    # drop NaN(s) in the main columns (case ID, activity, timestamp) to ensure functioning of the
    # algorithms
    prev_length = len(df)
    df = df.dropna(subset={constants.CASE_CONCEPT_NAME, xes_constants.DEFAULT_NAME_KEY,
                           xes_constants.DEFAULT_TIMESTAMP_KEY}, how="any")

    if len(df) < prev_length:
        if constants.SHOW_INTERNAL_WARNINGS:
            warnings.warn("Some rows of the Pandas data frame have been removed because of empty case IDs, activity labels, or timestamps to ensure the correct functioning of PM4Py's algorithms.")

    # make sure the case ID column is of string type
    df[constants.CASE_CONCEPT_NAME] = df[constants.CASE_CONCEPT_NAME].astype("string")
    # make sure the activity column is of string type
    df[xes_constants.DEFAULT_NAME_KEY] = df[xes_constants.DEFAULT_NAME_KEY].astype("string")
    # set an index column
    df = pandas_utils.insert_index(df, INDEX_COLUMN, copy_dataframe=False)
    # sorts the dataframe
    df = df.sort_values([constants.CASE_CONCEPT_NAME, xes_constants.DEFAULT_TIMESTAMP_KEY, INDEX_COLUMN])
    # re-set the index column
    df = pandas_utils.insert_index(df, INDEX_COLUMN, copy_dataframe=False)
    # sets the index column in the dataframe
    df = pandas_utils.insert_case_index(df, CASE_INDEX_COLUMN, copy_dataframe=False)
    # sets the properties
    if not hasattr(df, 'attrs'):
        # legacy (Python 3.6) support
        df.attrs = {}
    if start_timestamp_key in df.columns:
        df[xes_constants.DEFAULT_START_TIMESTAMP_KEY] = df[start_timestamp_key]
        df.attrs[constants.PARAMETER_CONSTANT_START_TIMESTAMP_KEY] = xes_constants.DEFAULT_START_TIMESTAMP_KEY
    df.attrs[constants.PARAMETER_CONSTANT_ACTIVITY_KEY] = xes_constants.DEFAULT_NAME_KEY
    df.attrs[constants.PARAMETER_CONSTANT_TIMESTAMP_KEY] = xes_constants.DEFAULT_TIMESTAMP_KEY
    df.attrs[constants.PARAMETER_CONSTANT_GROUP_KEY] = xes_constants.DEFAULT_GROUP_KEY
    df.attrs[constants.PARAMETER_CONSTANT_TRANSITION_KEY] = xes_constants.DEFAULT_TRANSITION_KEY
    df.attrs[constants.PARAMETER_CONSTANT_RESOURCE_KEY] = xes_constants.DEFAULT_RESOURCE_KEY
    df.attrs[constants.PARAMETER_CONSTANT_CASEID_KEY] = constants.CASE_CONCEPT_NAME
    return df


def rebase(log_obj: Union[EventLog, EventStream, pd.DataFrame], case_id: str = constants.CASE_CONCEPT_NAME,
                     activity_key: str = xes_constants.DEFAULT_NAME_KEY,
                     timestamp_key: str = xes_constants.DEFAULT_TIMESTAMP_KEY,
                     start_timestamp_key: str = xes_constants.DEFAULT_START_TIMESTAMP_KEY, timest_format: Optional[str] = None) -> Union[EventLog, EventStream, pd.DataFrame]:
    """
    Re-base the log object, changing the case ID, activity and timestamp attributes.

    :param log_obj: Log object
    :param case_id: Case identifier
    :param activity_key: Activity
    :param timestamp_key: Timestamp
    :param start_timestamp_key: Start timestamp
    :param timest_format: Timestamp format that is provided to Pandas
    :rtype: ``Union[EventLog, EventStream, pd.DataFrame]``

    .. code-block:: python3

        import pm4py

        rebased_dataframe = pm4py.rebase(dataframe, case_id='case:concept:name', activity_key='concept:name', timestamp_key='time:timestamp')
    """
    import pm4py

    __event_log_deprecation_warning(log_obj)

    if check_is_pandas_dataframe(log_obj):
        check_pandas_dataframe_columns(log_obj)

    if check_is_pandas_dataframe(log_obj):
        return format_dataframe(log_obj, case_id=case_id, activity_key=activity_key, timestamp_key=timestamp_key,
                                start_timestamp_key=start_timestamp_key, timest_format=timest_format)
    elif isinstance(log_obj, EventLog):
        log_obj = pm4py.convert_to_dataframe(log_obj)
        log_obj = format_dataframe(log_obj, case_id=case_id, activity_key=activity_key, timestamp_key=timestamp_key,
                                   start_timestamp_key=start_timestamp_key, timest_format=timest_format)
        from pm4py.objects.conversion.log import converter
        return converter.apply(log_obj, variant=converter.Variants.TO_EVENT_LOG)
    elif isinstance(log_obj, EventStream):
        log_obj = pm4py.convert_to_dataframe(log_obj)
        log_obj = format_dataframe(log_obj, case_id=case_id, activity_key=activity_key, timestamp_key=timestamp_key,
                                   start_timestamp_key=start_timestamp_key, timest_format=timest_format)
        return pm4py.convert_to_event_stream(log_obj)


def parse_process_tree(tree_string: str) -> ProcessTree:
    """
    Parse a process tree from a string

    :param tree_string: String representing a process tree (e.g. '-> ( 'A', O ( 'B', 'C' ), 'D' )'). Operators are '->': sequence, '+': parallel, 'X': xor choice, '*': binary loop, 'O' or choice
    :rtype: ``ProcessTree``

    .. code-block:: python3

        import pm4py

        process_tree = pm4py.parse_process_tree('-> ( 'A', O ( 'B', 'C' ), 'D' )')
    """
    from pm4py.objects.process_tree.utils.generic import parse
    return parse(tree_string)


def parse_powl_model_string(powl_string: str) -> POWL:
    """
    Parse a POWL model from a string representation of the process model
    (with the same format as the __repr__ and __str__ methods of the POWL model)

    :param powl_string: POWL model expressed as a string (__repr__ of the POWL model)
    :rtype: ``POWL``

    .. code-block:: python3

        import pm4py

        powl_model = pm4py.parse_powl_model_string('PO=(nodes={ NODE1, NODE2, NODE3 }, order={ NODE1-->NODE2 }')
        print(powl_model)

    Parameters
    ----------
    powl_string

    Returns
    -------

    """
    from pm4py.objects.powl import parser
    return parser.parse_powl_model_string(powl_string)


def serialize(*args) -> Tuple[str, bytes]:
    """
    Serialize a PM4Py object into a bytes string

    :param args: A PM4Py object, among: - an EventLog object - a Pandas dataframe object - a (Petrinet, Marking, Marking) tuple - a ProcessTree object - a BPMN object - a DFG, including the dictionary of the directly-follows relations, the start activities and the end activities
    :rtype: ``Tuple[str, bytes]``

    .. code-block:: python3

        import pm4py

        net, im, fm = pm4py.discover_petri_net_inductive(dataframe)
        serialization = pm4py.serialize(net, im, fm)
    """
    from pm4py.objects.log.obj import EventLog
    from pm4py.objects.petri_net.obj import PetriNet
    from pm4py.objects.process_tree.obj import ProcessTree
    from pm4py.objects.bpmn.obj import BPMN
    from collections import Counter

    if type(args[0]) is EventLog:
        from pm4py.objects.log.exporter.xes import exporter as xes_exporter
        return (constants.AvailableSerializations.EVENT_LOG.value, xes_exporter.serialize(*args))
    elif pandas_utils.check_is_pandas_dataframe(args[0]):
        from io import BytesIO
        buffer = BytesIO()
        args[0].to_parquet(buffer)
        return (constants.AvailableSerializations.DATAFRAME.value, buffer.getvalue())
    elif len(args) == 3 and type(args[0]) is PetriNet:
        from pm4py.objects.petri_net.exporter import exporter as petri_exporter
        return (constants.AvailableSerializations.PETRI_NET.value, petri_exporter.serialize(*args))
    elif type(args[0]) is ProcessTree:
        from pm4py.objects.process_tree.exporter import exporter as tree_exporter
        return (constants.AvailableSerializations.PROCESS_TREE.value, tree_exporter.serialize(*args))
    elif type(args[0]) is BPMN:
        from pm4py.objects.bpmn.exporter import exporter as bpmn_exporter
        return (constants.AvailableSerializations.BPMN.value, bpmn_exporter.serialize(*args))
    elif len(args) == 3 and (isinstance(args[0], dict) or isinstance(args[0], Counter)):
        from pm4py.objects.dfg.exporter import exporter as dfg_exporter
        return (constants.AvailableSerializations.DFG.value,
                dfg_exporter.serialize(args[0], parameters={"start_activities": args[1], "end_activities": args[2]}))


def deserialize(ser_obj: Tuple[str, bytes]) -> Any:
    """
    Deserialize a bytes string to a PM4Py object

    :param ser_obj: Serialized object (a tuple consisting of a string denoting the type of the object, and a bytes string representing the serialization)
    :rtype: ``Any``

    .. code-block:: python3

        import pm4py

        net, im, fm = pm4py.discover_petri_net_inductive(dataframe)
        serialization = pm4py.serialize(net, im, fm)
        net, im, fm = pm4py.deserialize(serialization)
    """
    if ser_obj[0] == constants.AvailableSerializations.EVENT_LOG.value:
        from pm4py.objects.log.importer.xes import importer as xes_importer
        return xes_importer.deserialize(ser_obj[1])
    elif ser_obj[0] == constants.AvailableSerializations.DATAFRAME.value:
        from io import BytesIO
        buffer = BytesIO()
        buffer.write(ser_obj[1])
        buffer.flush()
        return pd.read_parquet(buffer)
    elif ser_obj[0] == constants.AvailableSerializations.PETRI_NET.value:
        from pm4py.objects.petri_net.importer import importer as petri_importer
        return petri_importer.deserialize(ser_obj[1])
    elif ser_obj[0] == constants.AvailableSerializations.PROCESS_TREE.value:
        from pm4py.objects.process_tree.importer import importer as tree_importer
        return tree_importer.deserialize(ser_obj[1])
    elif ser_obj[0] == constants.AvailableSerializations.BPMN.value:
        from pm4py.objects.bpmn.importer import importer as bpmn_importer
        return bpmn_importer.deserialize(ser_obj[1])
    elif ser_obj[0] == constants.AvailableSerializations.DFG.value:
        from pm4py.objects.dfg.importer import importer as dfg_importer
        return dfg_importer.deserialize(ser_obj[1])


def get_properties(log, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name", resource_key: str = "org:resource", group_key: Optional[str] = None, start_timestamp_key: Optional[str] = None, **kwargs):
    """
    Gets the properties from a log object

    :param log: Log object
    :param activity_key: attribute to be used for the activity
    :param timestamp_key: attribute to be used for the timestamp
    :param start_timestamp_key: (optional) attribute to be used for the start timestamp
    :param case_id_key: attribute to be used as case identifier
    :param resource_key: (if provided) attribute to be used as resource
    :param group_key: (if provided) attribute to be used as group identifier
    :rtype: ``Dict``
    """
    __event_log_deprecation_warning(log)

    from copy import copy
    parameters = copy(log.properties) if hasattr(log, 'properties') else copy(log.attrs) if hasattr(log,
                                                                                                    'attrs') else {}

    if activity_key is not None:
        parameters[constants.PARAMETER_CONSTANT_ACTIVITY_KEY] = activity_key
        parameters[constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY] = activity_key

    if timestamp_key is not None:
        parameters[constants.PARAMETER_CONSTANT_TIMESTAMP_KEY] = timestamp_key

    if start_timestamp_key is not None:
        parameters[constants.PARAMETER_CONSTANT_START_TIMESTAMP_KEY] = start_timestamp_key

    if case_id_key is not None:
        parameters[constants.PARAMETER_CONSTANT_CASEID_KEY] = case_id_key

    if resource_key is not None:
        parameters[constants.PARAMETER_CONSTANT_RESOURCE_KEY] = resource_key

    if group_key is not None:
        parameters[constants.PARAMETER_CONSTANT_GROUP_KEY] = group_key

    for k, v in kwargs.items():
        parameters[k] = v

    return parameters


@deprecation.deprecated(deprecated_in="2.3.0", removed_in="3.0.0", details="this method will be removed in a future release."
                                                  "Please use the method-specific arguments.")
def set_classifier(log, classifier, classifier_attribute=constants.DEFAULT_CLASSIFIER_ATTRIBUTE):
    """
    Methods to set the specified classifier on an existing event log

    :param log: Log object
    :param classifier: Classifier that should be set: - A list of event attributes can be provided - A single event attribute can be provided - A classifier stored between the "classifiers" of the log object can be provided
    :param classifier_attribute: The attribute of the event that should store the concatenation of the attribute values for the given classifier
    :rtype: ``Union[EventLog, pd.DataFrame]``
    """
    __event_log_deprecation_warning(log)

    if type(classifier) is list:
        pass
    elif type(classifier) is str:
        if type(log) is EventLog and classifier in log.classifiers:
            classifier = log.classifiers[classifier]
        else:
            classifier = [classifier]

    if type(log) is EventLog:
        for trace in log:
            for event in trace:
                event[classifier_attribute] = "+".join(list(event[x] for x in classifier))
        log.properties[constants.PARAMETER_CONSTANT_ACTIVITY_KEY] = classifier_attribute
        log.properties[constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY] = classifier_attribute
    elif pandas_utils.check_is_pandas_dataframe(log):
        log[classifier_attribute] = log[classifier[0]]
        for i in range(1, len(classifier)):
            log[classifier_attribute] = log[classifier_attribute] + "+" + log[classifier[i]]
        log.attrs[constants.PARAMETER_CONSTANT_ACTIVITY_KEY] = classifier_attribute
        log.attrs[constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY] = classifier_attribute
    else:
        raise Exception("setting classifier is not defined for this class of objects")

    return log


def parse_event_log_string(traces: Collection[str], sep: str = ",",
                           activity_key: str = xes_constants.DEFAULT_NAME_KEY,
                           timestamp_key: str = xes_constants.DEFAULT_TIMESTAMP_KEY,
                           case_id_key: str = constants.CASE_CONCEPT_NAME,
                           return_legacy_log_object: bool = constants.DEFAULT_READ_XES_LEGACY_OBJECT) -> Union[EventLog, pd.DataFrame]:
    """
    Parse a collection of traces expressed as strings
    (e.g., ["A,B,C,D", "A,C,B,D", "A,D"])
    to a log object (Pandas dataframe)

    :param traces: Collection of traces expressed as strings
    :param sep: Separator used to split the activities of a string trace
    :param activity_key: The attribute that should be used as activity
    :param timestamp_key: The attribute that should be used as timestamp
    :param case_id_key: The attribute that should be used as case identifier
    :param return_legacy_log_object: boolean value enabling returning a log object (default: False)
    :rtype: ``pd.DataFrame``

    .. code-block:: python3

        import pm4py

        dataframe = pm4py.parse_event_log_string(["A,B,C,D", "A,C,B,D", "A,D"])
    """
    cases = []
    activitiess = []
    timestamps = []
    this_timest = 10000000

    for index, trace in enumerate(traces):
        activities = trace.split(sep)
        for act in activities:
            cases.append(str(index))
            activitiess.append(act)
            timestamps.append(strpfromiso.fix_naivety(datetime.datetime.fromtimestamp(this_timest)))
            this_timest = this_timest + 1

    dataframe = pandas_utils.instantiate_dataframe({case_id_key: cases, activity_key: activitiess, timestamp_key: timestamps})

    if return_legacy_log_object:
        import pm4py

        return pm4py.convert_to_event_log(dataframe, case_id_key=case_id_key)

    return dataframe


def project_on_event_attribute(log: Union[EventLog, pd.DataFrame], attribute_key=xes_constants.DEFAULT_NAME_KEY, case_id_key=None) -> \
List[List[str]]:
    """
    Project the event log on a specified event attribute. The result is a list, containing a list for each case:
    all the cases are transformed to list of values for the specified attribute.

    Example:

    pm4py.project_on_event_attribute(log, "concept:name")

    [['register request', 'examine casually', 'check ticket', 'decide', 'reinitiate request', 'examine thoroughly', 'check ticket', 'decide', 'pay compensation'],
    ['register request', 'check ticket', 'examine casually', 'decide', 'pay compensation'],
    ['register request', 'examine thoroughly', 'check ticket', 'decide', 'reject request'],
    ['register request', 'examine casually', 'check ticket', 'decide', 'pay compensation'],
    ['register request', 'examine casually', 'check ticket', 'decide', 'reinitiate request', 'check ticket', 'examine casually', 'decide', 'reinitiate request', 'examine casually', 'check ticket', 'decide', 'reject request'],
    ['register request', 'check ticket', 'examine thoroughly', 'decide', 'reject request']]

    :param log: Event log / Pandas dataframe
    :param attribute_key: The attribute to be used
    :param case_id_key: The attribute to be used as case identifier
    :rtype: ``List[List[str]]``

    .. code-block:: python3

        import pm4py

        list_list_activities = pm4py.project_on_event_attribute(dataframe, 'concept:name')
    """
    __event_log_deprecation_warning(log)

    output = []
    if check_is_pandas_dataframe(log):
        check_pandas_dataframe_columns(log)
        from pm4py.streaming.conversion import from_pandas
        parameters = {from_pandas.Parameters.ACTIVITY_KEY: attribute_key}
        if case_id_key is not None:
            parameters[from_pandas.Parameters.CASE_ID_KEY] = case_id_key
        it = from_pandas.apply(log, parameters=parameters)
        for trace in it:
            output.append([x[xes_constants.DEFAULT_NAME_KEY] if xes_constants.DEFAULT_NAME_KEY is not None else None for x in trace])
    else:
        for trace in log:
            output.append([x[attribute_key] if attribute_key is not None else None for x in trace])
    return output


def sample_cases(log: Union[EventLog, pd.DataFrame], num_cases: int, case_id_key: str = "case:concept:name") -> Union[EventLog, pd.DataFrame]:
    """
    (Random) Sample a given number of cases from the event log.

    :param log: Event log / Pandas dataframe
    :param num_cases: Number of cases to sample
    :param case_id_key: attribute to be used as case identifier
    :rtype: ``Union[EventLog, pd.DataFrame]``

    .. code-block:: python3

        import pm4py

        sampled_dataframe = pm4py.sample_cases(dataframe, 10, case_id_key='case:concept:name')
    """
    __event_log_deprecation_warning(log)

    if check_is_pandas_dataframe(log):
        check_pandas_dataframe_columns(log, case_id_key=case_id_key)

    properties = get_properties(log, case_id_key=case_id_key)

    if isinstance(log, EventLog):
        from pm4py.objects.log.util import sampling
        return sampling.sample(log, num_cases)
    elif check_is_pandas_dataframe(log):
        from pm4py.objects.log.util import dataframe_utils
        properties["max_no_cases"] = num_cases
        return dataframe_utils.sample_dataframe(log, parameters=properties)


def sample_events(log: Union[EventStream, OCEL], num_events: int) -> Union[EventStream, OCEL, pd.DataFrame]:
    """
    (Random) Sample a given number of events from the event log.

    :param log: Event stream / OCEL / Pandas dataframes
    :param num_events: Number of events to sample
    :param case_id_key: attribute to be used as case identifier
    :rtype: ``Union[EventStream, OCEL, pd.DataFrame]``

    .. code-block:: python3

        import pm4py

        sampled_dataframe = pm4py.sample_events(dataframe, 100)
    """
    __event_log_deprecation_warning(log)

    if check_is_pandas_dataframe(log):
        check_pandas_dataframe_columns(log)

    if isinstance(log, EventLog):
        from pm4py.objects.log.util import sampling
        return sampling.sample_log(log, num_events)
    elif isinstance(log, EventStream):
        from pm4py.objects.log.util import sampling
        return sampling.sample_stream(log, num_events)
    elif isinstance(log, OCEL):
        from pm4py.objects.ocel.util import sampling
        return sampling.sample_ocel_events(log, parameters={"num_entities": num_events})
    elif check_is_pandas_dataframe(log):
        return log.sample(n=num_events)


def __event_log_deprecation_warning(log):
    if constants.SHOW_EVENT_LOG_DEPRECATION and not hasattr(log, "deprecation_warning_shown"):
        if constants.SHOW_INTERNAL_WARNINGS:
            if isinstance(log, EventLog) or isinstance(log, Trace):
                warnings.warn("the EventLog class has been deprecated and will be removed in a future release.")
                log.deprecation_warning_shown = True
            elif isinstance(log, Trace):
                warnings.warn("the Trace class has been deprecated and will be removed in a future release.")
                log.deprecation_warning_shown = True
            elif isinstance(log, EventStream):
                warnings.warn("the EventStream class has been deprecated and will be removed in a future release.")
                log.deprecation_warning_shown = True