Spaces:
Running
Running
File size: 25,034 Bytes
e60e568 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 |
'''
This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de).
PM4Py is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
PM4Py is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PM4Py. If not, see <https://www.gnu.org/licenses/>.
'''
__doc__ = """
"""
import datetime
from typing import Optional, Tuple, Any, Collection, Union, List
import pandas as pd
from pm4py.objects.log.obj import EventLog, EventStream, Trace, Event
from pm4py.objects.process_tree.obj import ProcessTree
from pm4py.objects.powl.obj import POWL
from pm4py.objects.ocel.obj import OCEL
from pm4py.util import constants, xes_constants, pandas_utils
import warnings
from pm4py.util.pandas_utils import check_is_pandas_dataframe, check_pandas_dataframe_columns
from pm4py.util.dt_parsing.variants import strpfromiso
import deprecation
INDEX_COLUMN = "@@index"
CASE_INDEX_COLUMN = "@@case_index"
def format_dataframe(df: pd.DataFrame, case_id: str = constants.CASE_CONCEPT_NAME,
activity_key: str = xes_constants.DEFAULT_NAME_KEY,
timestamp_key: str = xes_constants.DEFAULT_TIMESTAMP_KEY,
start_timestamp_key: str = xes_constants.DEFAULT_START_TIMESTAMP_KEY,
timest_format: Optional[str] = None) -> pd.DataFrame:
"""
Give the appropriate format on the dataframe, for process mining purposes
:param df: Dataframe
:param case_id: Case identifier column
:param activity_key: Activity column
:param timestamp_key: Timestamp column
:param start_timestamp_key: Start timestamp column
:param timest_format: Timestamp format that is provided to Pandas
:rtype: ``pd.DataFrame``
.. code-block:: python3
import pandas as pd
import pm4py
dataframe = pd.read_csv('event_log.csv')
dataframe = pm4py.format_dataframe(dataframe, case_id_key='case:concept:name', activity_key='concept:name', timestamp_key='time:timestamp', start_timestamp_key='start_timestamp', timest_format='%Y-%m-%d %H:%M:%S')
"""
if timest_format is None:
timest_format = constants.DEFAULT_TIMESTAMP_PARSE_FORMAT
from pm4py.objects.log.util import dataframe_utils
if case_id not in df.columns:
raise Exception(case_id + " column (case ID) is not in the dataframe!")
if activity_key not in df.columns:
raise Exception(activity_key + " column (activity) is not in the dataframe!")
if timestamp_key not in df.columns:
raise Exception(timestamp_key + " column (timestamp) is not in the dataframe!")
if case_id != constants.CASE_CONCEPT_NAME:
if constants.CASE_CONCEPT_NAME in df.columns:
del df[constants.CASE_CONCEPT_NAME]
df[constants.CASE_CONCEPT_NAME] = df[case_id]
if activity_key != xes_constants.DEFAULT_NAME_KEY:
if xes_constants.DEFAULT_NAME_KEY in df.columns:
del df[xes_constants.DEFAULT_NAME_KEY]
df[xes_constants.DEFAULT_NAME_KEY] = df[activity_key]
if timestamp_key != xes_constants.DEFAULT_TIMESTAMP_KEY:
if xes_constants.DEFAULT_TIMESTAMP_KEY in df.columns:
del df[xes_constants.DEFAULT_TIMESTAMP_KEY]
df[xes_constants.DEFAULT_TIMESTAMP_KEY] = df[timestamp_key]
# makes sure that the timestamps column are of timestamp type
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=timest_format)
# drop NaN(s) in the main columns (case ID, activity, timestamp) to ensure functioning of the
# algorithms
prev_length = len(df)
df = df.dropna(subset={constants.CASE_CONCEPT_NAME, xes_constants.DEFAULT_NAME_KEY,
xes_constants.DEFAULT_TIMESTAMP_KEY}, how="any")
if len(df) < prev_length:
if constants.SHOW_INTERNAL_WARNINGS:
warnings.warn("Some rows of the Pandas data frame have been removed because of empty case IDs, activity labels, or timestamps to ensure the correct functioning of PM4Py's algorithms.")
# make sure the case ID column is of string type
df[constants.CASE_CONCEPT_NAME] = df[constants.CASE_CONCEPT_NAME].astype("string")
# make sure the activity column is of string type
df[xes_constants.DEFAULT_NAME_KEY] = df[xes_constants.DEFAULT_NAME_KEY].astype("string")
# set an index column
df = pandas_utils.insert_index(df, INDEX_COLUMN, copy_dataframe=False)
# sorts the dataframe
df = df.sort_values([constants.CASE_CONCEPT_NAME, xes_constants.DEFAULT_TIMESTAMP_KEY, INDEX_COLUMN])
# re-set the index column
df = pandas_utils.insert_index(df, INDEX_COLUMN, copy_dataframe=False)
# sets the index column in the dataframe
df = pandas_utils.insert_case_index(df, CASE_INDEX_COLUMN, copy_dataframe=False)
# sets the properties
if not hasattr(df, 'attrs'):
# legacy (Python 3.6) support
df.attrs = {}
if start_timestamp_key in df.columns:
df[xes_constants.DEFAULT_START_TIMESTAMP_KEY] = df[start_timestamp_key]
df.attrs[constants.PARAMETER_CONSTANT_START_TIMESTAMP_KEY] = xes_constants.DEFAULT_START_TIMESTAMP_KEY
df.attrs[constants.PARAMETER_CONSTANT_ACTIVITY_KEY] = xes_constants.DEFAULT_NAME_KEY
df.attrs[constants.PARAMETER_CONSTANT_TIMESTAMP_KEY] = xes_constants.DEFAULT_TIMESTAMP_KEY
df.attrs[constants.PARAMETER_CONSTANT_GROUP_KEY] = xes_constants.DEFAULT_GROUP_KEY
df.attrs[constants.PARAMETER_CONSTANT_TRANSITION_KEY] = xes_constants.DEFAULT_TRANSITION_KEY
df.attrs[constants.PARAMETER_CONSTANT_RESOURCE_KEY] = xes_constants.DEFAULT_RESOURCE_KEY
df.attrs[constants.PARAMETER_CONSTANT_CASEID_KEY] = constants.CASE_CONCEPT_NAME
return df
def rebase(log_obj: Union[EventLog, EventStream, pd.DataFrame], case_id: str = constants.CASE_CONCEPT_NAME,
activity_key: str = xes_constants.DEFAULT_NAME_KEY,
timestamp_key: str = xes_constants.DEFAULT_TIMESTAMP_KEY,
start_timestamp_key: str = xes_constants.DEFAULT_START_TIMESTAMP_KEY, timest_format: Optional[str] = None) -> Union[EventLog, EventStream, pd.DataFrame]:
"""
Re-base the log object, changing the case ID, activity and timestamp attributes.
:param log_obj: Log object
:param case_id: Case identifier
:param activity_key: Activity
:param timestamp_key: Timestamp
:param start_timestamp_key: Start timestamp
:param timest_format: Timestamp format that is provided to Pandas
:rtype: ``Union[EventLog, EventStream, pd.DataFrame]``
.. code-block:: python3
import pm4py
rebased_dataframe = pm4py.rebase(dataframe, case_id='case:concept:name', activity_key='concept:name', timestamp_key='time:timestamp')
"""
import pm4py
__event_log_deprecation_warning(log_obj)
if check_is_pandas_dataframe(log_obj):
check_pandas_dataframe_columns(log_obj)
if check_is_pandas_dataframe(log_obj):
return format_dataframe(log_obj, case_id=case_id, activity_key=activity_key, timestamp_key=timestamp_key,
start_timestamp_key=start_timestamp_key, timest_format=timest_format)
elif isinstance(log_obj, EventLog):
log_obj = pm4py.convert_to_dataframe(log_obj)
log_obj = format_dataframe(log_obj, case_id=case_id, activity_key=activity_key, timestamp_key=timestamp_key,
start_timestamp_key=start_timestamp_key, timest_format=timest_format)
from pm4py.objects.conversion.log import converter
return converter.apply(log_obj, variant=converter.Variants.TO_EVENT_LOG)
elif isinstance(log_obj, EventStream):
log_obj = pm4py.convert_to_dataframe(log_obj)
log_obj = format_dataframe(log_obj, case_id=case_id, activity_key=activity_key, timestamp_key=timestamp_key,
start_timestamp_key=start_timestamp_key, timest_format=timest_format)
return pm4py.convert_to_event_stream(log_obj)
def parse_process_tree(tree_string: str) -> ProcessTree:
"""
Parse a process tree from a string
:param tree_string: String representing a process tree (e.g. '-> ( 'A', O ( 'B', 'C' ), 'D' )'). Operators are '->': sequence, '+': parallel, 'X': xor choice, '*': binary loop, 'O' or choice
:rtype: ``ProcessTree``
.. code-block:: python3
import pm4py
process_tree = pm4py.parse_process_tree('-> ( 'A', O ( 'B', 'C' ), 'D' )')
"""
from pm4py.objects.process_tree.utils.generic import parse
return parse(tree_string)
def parse_powl_model_string(powl_string: str) -> POWL:
"""
Parse a POWL model from a string representation of the process model
(with the same format as the __repr__ and __str__ methods of the POWL model)
:param powl_string: POWL model expressed as a string (__repr__ of the POWL model)
:rtype: ``POWL``
.. code-block:: python3
import pm4py
powl_model = pm4py.parse_powl_model_string('PO=(nodes={ NODE1, NODE2, NODE3 }, order={ NODE1-->NODE2 }')
print(powl_model)
Parameters
----------
powl_string
Returns
-------
"""
from pm4py.objects.powl import parser
return parser.parse_powl_model_string(powl_string)
def serialize(*args) -> Tuple[str, bytes]:
"""
Serialize a PM4Py object into a bytes string
:param args: A PM4Py object, among: - an EventLog object - a Pandas dataframe object - a (Petrinet, Marking, Marking) tuple - a ProcessTree object - a BPMN object - a DFG, including the dictionary of the directly-follows relations, the start activities and the end activities
:rtype: ``Tuple[str, bytes]``
.. code-block:: python3
import pm4py
net, im, fm = pm4py.discover_petri_net_inductive(dataframe)
serialization = pm4py.serialize(net, im, fm)
"""
from pm4py.objects.log.obj import EventLog
from pm4py.objects.petri_net.obj import PetriNet
from pm4py.objects.process_tree.obj import ProcessTree
from pm4py.objects.bpmn.obj import BPMN
from collections import Counter
if type(args[0]) is EventLog:
from pm4py.objects.log.exporter.xes import exporter as xes_exporter
return (constants.AvailableSerializations.EVENT_LOG.value, xes_exporter.serialize(*args))
elif pandas_utils.check_is_pandas_dataframe(args[0]):
from io import BytesIO
buffer = BytesIO()
args[0].to_parquet(buffer)
return (constants.AvailableSerializations.DATAFRAME.value, buffer.getvalue())
elif len(args) == 3 and type(args[0]) is PetriNet:
from pm4py.objects.petri_net.exporter import exporter as petri_exporter
return (constants.AvailableSerializations.PETRI_NET.value, petri_exporter.serialize(*args))
elif type(args[0]) is ProcessTree:
from pm4py.objects.process_tree.exporter import exporter as tree_exporter
return (constants.AvailableSerializations.PROCESS_TREE.value, tree_exporter.serialize(*args))
elif type(args[0]) is BPMN:
from pm4py.objects.bpmn.exporter import exporter as bpmn_exporter
return (constants.AvailableSerializations.BPMN.value, bpmn_exporter.serialize(*args))
elif len(args) == 3 and (isinstance(args[0], dict) or isinstance(args[0], Counter)):
from pm4py.objects.dfg.exporter import exporter as dfg_exporter
return (constants.AvailableSerializations.DFG.value,
dfg_exporter.serialize(args[0], parameters={"start_activities": args[1], "end_activities": args[2]}))
def deserialize(ser_obj: Tuple[str, bytes]) -> Any:
"""
Deserialize a bytes string to a PM4Py object
:param ser_obj: Serialized object (a tuple consisting of a string denoting the type of the object, and a bytes string representing the serialization)
:rtype: ``Any``
.. code-block:: python3
import pm4py
net, im, fm = pm4py.discover_petri_net_inductive(dataframe)
serialization = pm4py.serialize(net, im, fm)
net, im, fm = pm4py.deserialize(serialization)
"""
if ser_obj[0] == constants.AvailableSerializations.EVENT_LOG.value:
from pm4py.objects.log.importer.xes import importer as xes_importer
return xes_importer.deserialize(ser_obj[1])
elif ser_obj[0] == constants.AvailableSerializations.DATAFRAME.value:
from io import BytesIO
buffer = BytesIO()
buffer.write(ser_obj[1])
buffer.flush()
return pd.read_parquet(buffer)
elif ser_obj[0] == constants.AvailableSerializations.PETRI_NET.value:
from pm4py.objects.petri_net.importer import importer as petri_importer
return petri_importer.deserialize(ser_obj[1])
elif ser_obj[0] == constants.AvailableSerializations.PROCESS_TREE.value:
from pm4py.objects.process_tree.importer import importer as tree_importer
return tree_importer.deserialize(ser_obj[1])
elif ser_obj[0] == constants.AvailableSerializations.BPMN.value:
from pm4py.objects.bpmn.importer import importer as bpmn_importer
return bpmn_importer.deserialize(ser_obj[1])
elif ser_obj[0] == constants.AvailableSerializations.DFG.value:
from pm4py.objects.dfg.importer import importer as dfg_importer
return dfg_importer.deserialize(ser_obj[1])
def get_properties(log, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name", resource_key: str = "org:resource", group_key: Optional[str] = None, start_timestamp_key: Optional[str] = None, **kwargs):
"""
Gets the properties from a log object
:param log: Log object
:param activity_key: attribute to be used for the activity
:param timestamp_key: attribute to be used for the timestamp
:param start_timestamp_key: (optional) attribute to be used for the start timestamp
:param case_id_key: attribute to be used as case identifier
:param resource_key: (if provided) attribute to be used as resource
:param group_key: (if provided) attribute to be used as group identifier
:rtype: ``Dict``
"""
__event_log_deprecation_warning(log)
from copy import copy
parameters = copy(log.properties) if hasattr(log, 'properties') else copy(log.attrs) if hasattr(log,
'attrs') else {}
if activity_key is not None:
parameters[constants.PARAMETER_CONSTANT_ACTIVITY_KEY] = activity_key
parameters[constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY] = activity_key
if timestamp_key is not None:
parameters[constants.PARAMETER_CONSTANT_TIMESTAMP_KEY] = timestamp_key
if start_timestamp_key is not None:
parameters[constants.PARAMETER_CONSTANT_START_TIMESTAMP_KEY] = start_timestamp_key
if case_id_key is not None:
parameters[constants.PARAMETER_CONSTANT_CASEID_KEY] = case_id_key
if resource_key is not None:
parameters[constants.PARAMETER_CONSTANT_RESOURCE_KEY] = resource_key
if group_key is not None:
parameters[constants.PARAMETER_CONSTANT_GROUP_KEY] = group_key
for k, v in kwargs.items():
parameters[k] = v
return parameters
@deprecation.deprecated(deprecated_in="2.3.0", removed_in="3.0.0", details="this method will be removed in a future release."
"Please use the method-specific arguments.")
def set_classifier(log, classifier, classifier_attribute=constants.DEFAULT_CLASSIFIER_ATTRIBUTE):
"""
Methods to set the specified classifier on an existing event log
:param log: Log object
:param classifier: Classifier that should be set: - A list of event attributes can be provided - A single event attribute can be provided - A classifier stored between the "classifiers" of the log object can be provided
:param classifier_attribute: The attribute of the event that should store the concatenation of the attribute values for the given classifier
:rtype: ``Union[EventLog, pd.DataFrame]``
"""
__event_log_deprecation_warning(log)
if type(classifier) is list:
pass
elif type(classifier) is str:
if type(log) is EventLog and classifier in log.classifiers:
classifier = log.classifiers[classifier]
else:
classifier = [classifier]
if type(log) is EventLog:
for trace in log:
for event in trace:
event[classifier_attribute] = "+".join(list(event[x] for x in classifier))
log.properties[constants.PARAMETER_CONSTANT_ACTIVITY_KEY] = classifier_attribute
log.properties[constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY] = classifier_attribute
elif pandas_utils.check_is_pandas_dataframe(log):
log[classifier_attribute] = log[classifier[0]]
for i in range(1, len(classifier)):
log[classifier_attribute] = log[classifier_attribute] + "+" + log[classifier[i]]
log.attrs[constants.PARAMETER_CONSTANT_ACTIVITY_KEY] = classifier_attribute
log.attrs[constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY] = classifier_attribute
else:
raise Exception("setting classifier is not defined for this class of objects")
return log
def parse_event_log_string(traces: Collection[str], sep: str = ",",
activity_key: str = xes_constants.DEFAULT_NAME_KEY,
timestamp_key: str = xes_constants.DEFAULT_TIMESTAMP_KEY,
case_id_key: str = constants.CASE_CONCEPT_NAME,
return_legacy_log_object: bool = constants.DEFAULT_READ_XES_LEGACY_OBJECT) -> Union[EventLog, pd.DataFrame]:
"""
Parse a collection of traces expressed as strings
(e.g., ["A,B,C,D", "A,C,B,D", "A,D"])
to a log object (Pandas dataframe)
:param traces: Collection of traces expressed as strings
:param sep: Separator used to split the activities of a string trace
:param activity_key: The attribute that should be used as activity
:param timestamp_key: The attribute that should be used as timestamp
:param case_id_key: The attribute that should be used as case identifier
:param return_legacy_log_object: boolean value enabling returning a log object (default: False)
:rtype: ``pd.DataFrame``
.. code-block:: python3
import pm4py
dataframe = pm4py.parse_event_log_string(["A,B,C,D", "A,C,B,D", "A,D"])
"""
cases = []
activitiess = []
timestamps = []
this_timest = 10000000
for index, trace in enumerate(traces):
activities = trace.split(sep)
for act in activities:
cases.append(str(index))
activitiess.append(act)
timestamps.append(strpfromiso.fix_naivety(datetime.datetime.fromtimestamp(this_timest)))
this_timest = this_timest + 1
dataframe = pandas_utils.instantiate_dataframe({case_id_key: cases, activity_key: activitiess, timestamp_key: timestamps})
if return_legacy_log_object:
import pm4py
return pm4py.convert_to_event_log(dataframe, case_id_key=case_id_key)
return dataframe
def project_on_event_attribute(log: Union[EventLog, pd.DataFrame], attribute_key=xes_constants.DEFAULT_NAME_KEY, case_id_key=None) -> \
List[List[str]]:
"""
Project the event log on a specified event attribute. The result is a list, containing a list for each case:
all the cases are transformed to list of values for the specified attribute.
Example:
pm4py.project_on_event_attribute(log, "concept:name")
[['register request', 'examine casually', 'check ticket', 'decide', 'reinitiate request', 'examine thoroughly', 'check ticket', 'decide', 'pay compensation'],
['register request', 'check ticket', 'examine casually', 'decide', 'pay compensation'],
['register request', 'examine thoroughly', 'check ticket', 'decide', 'reject request'],
['register request', 'examine casually', 'check ticket', 'decide', 'pay compensation'],
['register request', 'examine casually', 'check ticket', 'decide', 'reinitiate request', 'check ticket', 'examine casually', 'decide', 'reinitiate request', 'examine casually', 'check ticket', 'decide', 'reject request'],
['register request', 'check ticket', 'examine thoroughly', 'decide', 'reject request']]
:param log: Event log / Pandas dataframe
:param attribute_key: The attribute to be used
:param case_id_key: The attribute to be used as case identifier
:rtype: ``List[List[str]]``
.. code-block:: python3
import pm4py
list_list_activities = pm4py.project_on_event_attribute(dataframe, 'concept:name')
"""
__event_log_deprecation_warning(log)
output = []
if check_is_pandas_dataframe(log):
check_pandas_dataframe_columns(log)
from pm4py.streaming.conversion import from_pandas
parameters = {from_pandas.Parameters.ACTIVITY_KEY: attribute_key}
if case_id_key is not None:
parameters[from_pandas.Parameters.CASE_ID_KEY] = case_id_key
it = from_pandas.apply(log, parameters=parameters)
for trace in it:
output.append([x[xes_constants.DEFAULT_NAME_KEY] if xes_constants.DEFAULT_NAME_KEY is not None else None for x in trace])
else:
for trace in log:
output.append([x[attribute_key] if attribute_key is not None else None for x in trace])
return output
def sample_cases(log: Union[EventLog, pd.DataFrame], num_cases: int, case_id_key: str = "case:concept:name") -> Union[EventLog, pd.DataFrame]:
"""
(Random) Sample a given number of cases from the event log.
:param log: Event log / Pandas dataframe
:param num_cases: Number of cases to sample
:param case_id_key: attribute to be used as case identifier
:rtype: ``Union[EventLog, pd.DataFrame]``
.. code-block:: python3
import pm4py
sampled_dataframe = pm4py.sample_cases(dataframe, 10, case_id_key='case:concept:name')
"""
__event_log_deprecation_warning(log)
if check_is_pandas_dataframe(log):
check_pandas_dataframe_columns(log, case_id_key=case_id_key)
properties = get_properties(log, case_id_key=case_id_key)
if isinstance(log, EventLog):
from pm4py.objects.log.util import sampling
return sampling.sample(log, num_cases)
elif check_is_pandas_dataframe(log):
from pm4py.objects.log.util import dataframe_utils
properties["max_no_cases"] = num_cases
return dataframe_utils.sample_dataframe(log, parameters=properties)
def sample_events(log: Union[EventStream, OCEL], num_events: int) -> Union[EventStream, OCEL, pd.DataFrame]:
"""
(Random) Sample a given number of events from the event log.
:param log: Event stream / OCEL / Pandas dataframes
:param num_events: Number of events to sample
:param case_id_key: attribute to be used as case identifier
:rtype: ``Union[EventStream, OCEL, pd.DataFrame]``
.. code-block:: python3
import pm4py
sampled_dataframe = pm4py.sample_events(dataframe, 100)
"""
__event_log_deprecation_warning(log)
if check_is_pandas_dataframe(log):
check_pandas_dataframe_columns(log)
if isinstance(log, EventLog):
from pm4py.objects.log.util import sampling
return sampling.sample_log(log, num_events)
elif isinstance(log, EventStream):
from pm4py.objects.log.util import sampling
return sampling.sample_stream(log, num_events)
elif isinstance(log, OCEL):
from pm4py.objects.ocel.util import sampling
return sampling.sample_ocel_events(log, parameters={"num_entities": num_events})
elif check_is_pandas_dataframe(log):
return log.sample(n=num_events)
def __event_log_deprecation_warning(log):
if constants.SHOW_EVENT_LOG_DEPRECATION and not hasattr(log, "deprecation_warning_shown"):
if constants.SHOW_INTERNAL_WARNINGS:
if isinstance(log, EventLog) or isinstance(log, Trace):
warnings.warn("the EventLog class has been deprecated and will be removed in a future release.")
log.deprecation_warning_shown = True
elif isinstance(log, Trace):
warnings.warn("the Trace class has been deprecated and will be removed in a future release.")
log.deprecation_warning_shown = True
elif isinstance(log, EventStream):
warnings.warn("the EventStream class has been deprecated and will be removed in a future release.")
log.deprecation_warning_shown = True
|