Spaces:
Running
Running
File size: 69,704 Bytes
e60e568 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 |
'''
This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de).
PM4Py is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
PM4Py is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PM4Py. If not, see <https://www.gnu.org/licenses/>.
'''
__doc__ = """
The ``pm4py.vis`` module contains the visualizations offered in ``pm4py``
"""
import os
import sys
from typing import Optional
from typing import Union, List, Dict, Any, Tuple, Set
import pandas as pd
from pm4py.objects.bpmn.obj import BPMN
from pm4py.objects.powl.obj import POWL
from pm4py.objects.heuristics_net.obj import HeuristicsNet
from pm4py.objects.log.obj import EventLog, EventStream
from pm4py.objects.petri_net.obj import PetriNet, Marking
from pm4py.objects.process_tree.obj import ProcessTree
from pm4py.util.pandas_utils import check_is_pandas_dataframe, check_pandas_dataframe_columns
from pm4py.utils import get_properties
from pm4py.objects.transition_system.obj import TransitionSystem
from pm4py.objects.trie.obj import Trie
from pm4py.objects.ocel.obj import OCEL
from pm4py.objects.org.sna.obj import SNA
from pm4py.util import constants
def view_petri_net(petri_net: PetriNet, initial_marking: Optional[Marking] = None,
final_marking: Optional[Marking] = None, format: str = constants.DEFAULT_FORMAT_GVIZ_VIEW, bgcolor: str = "white",
decorations: Dict[Any, Any] = None, debug: bool = False, rankdir: str = constants.DEFAULT_RANKDIR_GVIZ):
"""
Views a (composite) Petri net
:param petri_net: Petri net
:param initial_marking: Initial marking
:param final_marking: Final marking
:param format: Format of the output picture (if html is provided, GraphvizJS is used to render the visualization in an HTML page)
:param bgcolor: Background color of the visualization (default: white)
:param decorations: Decorations (color, label) associated to the elements of the Petri net
:param debug: Boolean enabling/disabling the debug mode (show place and transition's names)
:param rankdir: sets the direction of the graph ("LR" for left-to-right; "TB" for top-to-bottom)
.. code-block:: python3
import pm4py
net, im, fm = pm4py.discover_petri_net_inductive(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
pm4py.view_petri_net(net, im, fm, format='svg')
"""
format = str(format).lower()
from pm4py.visualization.petri_net import visualizer as pn_visualizer
gviz = pn_visualizer.apply(petri_net, initial_marking, final_marking,
parameters={pn_visualizer.Variants.WO_DECORATION.value.Parameters.FORMAT: format, "bgcolor": bgcolor, "decorations": decorations, "debug": debug, "set_rankdir": rankdir})
pn_visualizer.view(gviz)
def save_vis_petri_net(petri_net: PetriNet, initial_marking: Marking, final_marking: Marking, file_path: str, bgcolor: str = "white",
decorations: Dict[Any, Any] = None, debug: bool = False, rankdir: str = constants.DEFAULT_RANKDIR_GVIZ, **kwargs):
"""
Saves a Petri net visualization to a file
:param petri_net: Petri net
:param initial_marking: Initial marking
:param final_marking: Final marking
:param file_path: Destination path
:param bgcolor: Background color of the visualization (default: white)
:param decorations: Decorations (color, label) associated to the elements of the Petri net
:param debug: Boolean enabling/disabling the debug mode (show place and transition's names)
:param rankdir: sets the direction of the graph ("LR" for left-to-right; "TB" for top-to-bottom)
.. code-block:: python3
import pm4py
net, im, fm = pm4py.discover_petri_net_inductive(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
pm4py.save_vis_petri_net(net, im, fm, 'petri_net.png')
"""
file_path = str(file_path)
format = os.path.splitext(file_path)[1][1:].lower()
from pm4py.visualization.petri_net import visualizer as pn_visualizer
gviz = pn_visualizer.apply(petri_net, initial_marking, final_marking,
parameters={pn_visualizer.Variants.WO_DECORATION.value.Parameters.FORMAT: format, "bgcolor": bgcolor, "decorations": decorations, "debug": debug, "set_rankdir": rankdir})
return pn_visualizer.save(gviz, file_path)
def view_performance_dfg(dfg: dict, start_activities: dict, end_activities: dict, format: str = constants.DEFAULT_FORMAT_GVIZ_VIEW,
aggregation_measure="mean", bgcolor: str = "white", rankdir: str = constants.DEFAULT_RANKDIR_GVIZ, serv_time: Optional[Dict[str, float]] = None):
"""
Views a performance DFG
:param dfg: DFG object
:param start_activities: Start activities
:param end_activities: End activities
:param format: Format of the output picture (if html is provided, GraphvizJS is used to render the visualization in an HTML page)
:param aggregation_measure: Aggregation measure (default: mean): mean, median, min, max, sum, stdev
:param bgcolor: Background color of the visualization (default: white)
:param rankdir: sets the direction of the graph ("LR" for left-to-right; "TB" for top-to-bottom)
:param serv_time: (optional) provides the activities' service times, used to decorate the graph
.. code-block:: python3
import pm4py
performance_dfg, start_activities, end_activities = pm4py.discover_performance_dfg(dataframe, case_id_key='case:concept:name', activity_key='concept:name', timestamp_key='time:timestamp')
pm4py.view_performance_dfg(performance_dfg, start_activities, end_activities, format='svg')
"""
format = str(format).lower()
from pm4py.visualization.dfg import visualizer as dfg_visualizer
from pm4py.visualization.dfg.variants import performance as dfg_perf_visualizer
dfg_parameters = dfg_perf_visualizer.Parameters
parameters = {}
parameters[dfg_parameters.FORMAT] = format
parameters[dfg_parameters.START_ACTIVITIES] = start_activities
parameters[dfg_parameters.END_ACTIVITIES] = end_activities
parameters[dfg_parameters.AGGREGATION_MEASURE] = aggregation_measure
parameters["bgcolor"] = bgcolor
parameters["rankdir"] = rankdir
gviz = dfg_perf_visualizer.apply(dfg, serv_time=serv_time, parameters=parameters)
dfg_visualizer.view(gviz)
def save_vis_performance_dfg(dfg: dict, start_activities: dict, end_activities: dict, file_path: str,
aggregation_measure="mean", bgcolor: str = "white", rankdir: str = constants.DEFAULT_RANKDIR_GVIZ, serv_time: Optional[Dict[str, float]] = None, **kwargs):
"""
Saves the visualization of a performance DFG
:param dfg: DFG object
:param start_activities: Start activities
:param end_activities: End activities
:param file_path: Destination path
:param aggregation_measure: Aggregation measure (default: mean): mean, median, min, max, sum, stdev
:param bgcolor: Background color of the visualization (default: white)
:param rankdir: sets the direction of the graph ("LR" for left-to-right; "TB" for top-to-bottom)
:param serv_time: (optional) provides the activities' service times, used to decorate the graph
.. code-block:: python3
import pm4py
performance_dfg, start_activities, end_activities = pm4py.discover_performance_dfg(dataframe, case_id_key='case:concept:name', activity_key='concept:name', timestamp_key='time:timestamp')
pm4py.save_vis_performance_dfg(performance_dfg, start_activities, end_activities, 'perf_dfg.png')
"""
file_path = str(file_path)
format = os.path.splitext(file_path)[1][1:].lower()
from pm4py.visualization.dfg import visualizer as dfg_visualizer
from pm4py.visualization.dfg.variants import performance as dfg_perf_visualizer
dfg_parameters = dfg_perf_visualizer.Parameters
parameters = {}
parameters[dfg_parameters.FORMAT] = format
parameters[dfg_parameters.START_ACTIVITIES] = start_activities
parameters[dfg_parameters.END_ACTIVITIES] = end_activities
parameters[dfg_parameters.AGGREGATION_MEASURE] = aggregation_measure
parameters["bgcolor"] = bgcolor
parameters["rankdir"] = rankdir
gviz = dfg_perf_visualizer.apply(dfg, serv_time=serv_time, parameters=parameters)
return dfg_visualizer.save(gviz, file_path)
def view_dfg(dfg: dict, start_activities: dict, end_activities: dict, format: str = constants.DEFAULT_FORMAT_GVIZ_VIEW, bgcolor: str = "white", max_num_edges: int = sys.maxsize, rankdir: str = constants.DEFAULT_RANKDIR_GVIZ):
"""
Views a (composite) DFG
:param dfg: DFG object
:param start_activities: Start activities
:param end_activities: End activities
:param format: Format of the output picture (if html is provided, GraphvizJS is used to render the visualization in an HTML page)
:param bgcolor: Background color of the visualization (default: white)
:param max_num_edges: maximum number of edges to represent in the graph
:param rankdir: sets the direction of the graph ("LR" for left-to-right; "TB" for top-to-bottom)
.. code-block:: python3
import pm4py
dfg, start_activities, end_activities = pm4py.discover_dfg(dataframe, case_id_key='case:concept:name', activity_key='concept:name', timestamp_key='time:timestamp')
pm4py.view_dfg(dfg, start_activities, end_activities, format='svg')
"""
format = str(format).lower()
from pm4py.visualization.dfg import visualizer as dfg_visualizer
dfg_parameters = dfg_visualizer.Variants.FREQUENCY.value.Parameters
parameters = {}
parameters[dfg_parameters.FORMAT] = format
parameters[dfg_parameters.START_ACTIVITIES] = start_activities
parameters[dfg_parameters.END_ACTIVITIES] = end_activities
parameters["bgcolor"] = bgcolor
parameters["rankdir"] = rankdir
parameters["maxNoOfEdgesInDiagram"] = max_num_edges
gviz = dfg_visualizer.apply(dfg, variant=dfg_visualizer.Variants.FREQUENCY,
parameters=parameters)
dfg_visualizer.view(gviz)
def save_vis_dfg(dfg: dict, start_activities: dict, end_activities: dict, file_path: str, bgcolor: str = "white", max_num_edges: int = sys.maxsize, rankdir: str = constants.DEFAULT_RANKDIR_GVIZ, **kwargs):
"""
Saves a DFG visualization to a file
:param dfg: DFG object
:param start_activities: Start activities
:param end_activities: End activities
:param file_path: Destination path
:param bgcolor: Background color of the visualization (default: white)
:param max_num_edges: maximum number of edges to represent in the graph
:param rankdir: sets the direction of the graph ("LR" for left-to-right; "TB" for top-to-bottom)
.. code-block:: python3
import pm4py
dfg, start_activities, end_activities = pm4py.discover_dfg(dataframe, case_id_key='case:concept:name', activity_key='concept:name', timestamp_key='time:timestamp')
pm4py.save_vis_dfg(dfg, start_activities, end_activities, 'dfg.png')
"""
file_path = str(file_path)
format = os.path.splitext(file_path)[1][1:].lower()
from pm4py.visualization.dfg import visualizer as dfg_visualizer
dfg_parameters = dfg_visualizer.Variants.FREQUENCY.value.Parameters
parameters = {}
parameters[dfg_parameters.FORMAT] = format
parameters[dfg_parameters.START_ACTIVITIES] = start_activities
parameters[dfg_parameters.END_ACTIVITIES] = end_activities
parameters["bgcolor"] = bgcolor
parameters["rankdir"] = rankdir
parameters["maxNoOfEdgesInDiagram"] = max_num_edges
gviz = dfg_visualizer.apply(dfg, variant=dfg_visualizer.Variants.FREQUENCY,
parameters=parameters)
return dfg_visualizer.save(gviz, file_path)
def view_process_tree(tree: ProcessTree, format: str = constants.DEFAULT_FORMAT_GVIZ_VIEW, bgcolor: str = "white", rankdir: str = constants.DEFAULT_RANKDIR_GVIZ):
"""
Views a process tree
:param tree: Process tree
:param format: Format of the visualization (if html is provided, GraphvizJS is used to render the visualization in an HTML page)
:param bgcolor: Background color of the visualization (default: white)
:param rankdir: sets the direction of the graph ("LR" for left-to-right; "TB" for top-to-bottom)
.. code-block:: python3
import pm4py
process_tree = pm4py.discover_process_tree_inductive(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
pm4py.view_process_tree(process_tree, format='svg')
"""
format = str(format).lower()
from pm4py.visualization.process_tree import visualizer as pt_visualizer
parameters = pt_visualizer.Variants.WO_DECORATION.value.Parameters
gviz = pt_visualizer.apply(tree, parameters={parameters.FORMAT: format, "bgcolor": bgcolor, "rankdir": rankdir})
pt_visualizer.view(gviz)
def save_vis_process_tree(tree: ProcessTree, file_path: str, bgcolor: str = "white", rankdir: str = constants.DEFAULT_RANKDIR_GVIZ, **kwargs):
"""
Saves the visualization of a process tree
:param tree: Process tree
:param file_path: Destination path
:param bgcolor: Background color of the visualization (default: white)
:param rankdir: sets the direction of the graph ("LR" for left-to-right; "TB" for top-to-bottom)
.. code-block:: python3
import pm4py
process_tree = pm4py.discover_process_tree_inductive(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
pm4py.save_vis_process_tree(process_tree, 'process_tree.png')
"""
file_path = str(file_path)
format = os.path.splitext(file_path)[1][1:].lower()
from pm4py.visualization.process_tree import visualizer as pt_visualizer
parameters = pt_visualizer.Variants.WO_DECORATION.value.Parameters
gviz = pt_visualizer.apply(tree, parameters={parameters.FORMAT: format, "bgcolor": bgcolor, "rankdir": rankdir})
return pt_visualizer.save(gviz, file_path)
def save_vis_bpmn(bpmn_graph: BPMN, file_path: str, bgcolor: str = "white", rankdir: str = constants.DEFAULT_RANKDIR_GVIZ, variant_str: str = "classic", **kwargs):
"""
Saves the visualization of a BPMN graph
:param bpmn_graph: BPMN graph
:param file_path: Destination path
:param bgcolor: Background color of the visualization (default: white)
:param rankdir: sets the direction of the graph ("LR" for left-to-right; "TB" for top-to-bottom)
:param variant_str: variant of the visualization to be used ("classic" or "dagrejs")
.. code-block:: python3
import pm4py
bpmn_graph = pm4py.discover_bpmn_inductive(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
pm4py.save_vis_bpmn(bpmn_graph, 'trial.bpmn')
"""
file_path = str(file_path)
format = os.path.splitext(file_path)[1][1:].lower()
from pm4py.visualization.bpmn import visualizer as bpmn_visualizer
variant = None
if variant_str == "classic":
variant = bpmn_visualizer.Variants.CLASSIC
elif variant_str == "dagrejs":
variant = bpmn_visualizer.Variants.DAGREJS
gviz = bpmn_visualizer.apply(bpmn_graph, variant=variant, parameters={"format": format, "bgcolor": bgcolor, "rankdir": rankdir})
return bpmn_visualizer.save(gviz, file_path, variant=variant)
def view_bpmn(bpmn_graph: BPMN, format: str = constants.DEFAULT_FORMAT_GVIZ_VIEW, bgcolor: str = "white", rankdir: str = constants.DEFAULT_RANKDIR_GVIZ, variant_str: str = "classic"):
"""
Views a BPMN graph
:param bpmn_graph: BPMN graph
:param format: Format of the visualization (if html is provided, GraphvizJS is used to render the visualization in an HTML page)
:param bgcolor: Background color of the visualization (default: white)
:param rankdir: sets the direction of the graph ("LR" for left-to-right; "TB" for top-to-bottom)
:param variant_str: variant of the visualization to be used ("classic" or "dagrejs")
.. code-block:: python3
import pm4py
bpmn_graph = pm4py.discover_bpmn_inductive(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
pm4py.view_bpmn(bpmn_graph)
"""
format = str(format).lower()
from pm4py.visualization.bpmn import visualizer as bpmn_visualizer
variant = None
if variant_str == "classic":
variant = bpmn_visualizer.Variants.CLASSIC
elif variant_str == "dagrejs":
variant = bpmn_visualizer.Variants.DAGREJS
gviz = bpmn_visualizer.apply(bpmn_graph, variant=variant, parameters={"format": format, "bgcolor": bgcolor, "rankdir": rankdir})
bpmn_visualizer.view(gviz, variant=variant)
def view_heuristics_net(heu_net: HeuristicsNet, format: str = "png", bgcolor: str = "white"):
"""
Views an heuristics net
:param heu_net: Heuristics net
:param format: Format of the visualization
:param bgcolor: Background color of the visualization (default: white)
.. code-block:: python3
import pm4py
heu_net = pm4py.discover_heuristics_net(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
pm4py.view_heuristics_net(heu_net, format='svg')
"""
format = str(format).lower()
from pm4py.visualization.heuristics_net import visualizer as hn_visualizer
parameters = hn_visualizer.Variants.PYDOTPLUS.value.Parameters
gviz = hn_visualizer.apply(heu_net, parameters={parameters.FORMAT: format, "bgcolor": bgcolor})
hn_visualizer.view(gviz)
def save_vis_heuristics_net(heu_net: HeuristicsNet, file_path: str, bgcolor: str = "white", **kwargs):
"""
Saves the visualization of an heuristics net
:param heu_net: Heuristics net
:param file_path: Destination path
:param bgcolor: Background color of the visualization (default: white)
.. code-block:: python3
import pm4py
heu_net = pm4py.discover_heuristics_net(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
pm4py.save_vis_heuristics_net(heu_net, 'heu.png')
"""
file_path = str(file_path)
format = os.path.splitext(file_path)[1][1:].lower()
from pm4py.visualization.heuristics_net import visualizer as hn_visualizer
parameters = hn_visualizer.Variants.PYDOTPLUS.value.Parameters
gviz = hn_visualizer.apply(heu_net, parameters={parameters.FORMAT: format, "bgcolor": bgcolor})
return hn_visualizer.save(gviz, file_path)
def __dotted_attribute_selection(log: Union[EventLog, pd.DataFrame], attributes):
"""
Default attribute selection for the dotted chart
"""
if check_is_pandas_dataframe(log):
check_pandas_dataframe_columns(log)
if attributes is None:
from pm4py.util import xes_constants
from pm4py.objects.log.util import sorting
from pm4py.objects.conversion.log import converter
log = converter.apply(log, variant=converter.Variants.TO_EVENT_LOG)
log = sorting.sort_timestamp(log, xes_constants.DEFAULT_TIMESTAMP_KEY)
for index, trace in enumerate(log):
trace.attributes["@@index"] = index
attributes = ["time:timestamp", "case:@@index", "concept:name"]
return log, attributes
def view_dotted_chart(log: Union[EventLog, pd.DataFrame], format: str = "png", attributes=None, bgcolor: str = "white", show_legend: bool = True):
"""
Displays the dotted chart
The dotted chart is a classic visualization of the events inside an event log across different dimensions. Each event of the event log is corresponding to a point. The dimensions are projected on a graph having:
- X axis: the values of the first dimension are represented there.
- Y-axis: the values of the second dimension are represented there.
- Color: the values of the third dimension are represented as different colors for the points of the dotted chart.
The values can be either string, numeric or date values, and are managed accordingly by the dotted chart.
The dotted chart can be built on different attributes. A convenient choice for the dotted chart is to visualize the distribution of cases and events over the time, with the following choices:
- X-axis: the timestamp of the event.
- Y-axis: the index of the case inside the event log.
- Color: the activity of the event.
The aforementioned choice permits to identify visually patterns such as:
- Batches.
- Variations in the case arrival rate.
- Variations in the case finishing rate.
:param log: Event log
:param format: Image format
:param attributes: Attributes that should be used to construct the dotted chart. If None, the default dotted chart will be shown: x-axis: time y-axis: cases (in order of occurrence in the event log) color: activity. For custom attributes, use a list of attributes of the form [x-axis attribute, y-axis attribute, color attribute], e.g., ["concept:name", "org:resource", "concept:name"])
:param bgcolor: background color to be used in the dotted chart
:param show_legend: boolean (enables/disables showing the legend)
.. code-block:: python3
import pm4py
pm4py.view_dotted_chart(dataframe, format='svg')
pm4py.view_dotted_chart(dataframe, attributes=['time:timestamp', 'concept:name', 'org:resource'])
"""
format = str(format).lower()
if check_is_pandas_dataframe(log):
check_pandas_dataframe_columns(log)
log, attributes = __dotted_attribute_selection(log, attributes)
parameters = {}
parameters["format"] = format
parameters["bgcolor"] = bgcolor
parameters["show_legend"] = show_legend
from pm4py.visualization.dotted_chart import visualizer as dotted_chart_visualizer
gviz = dotted_chart_visualizer.apply(log, attributes, parameters=parameters)
dotted_chart_visualizer.view(gviz)
def save_vis_dotted_chart(log: Union[EventLog, pd.DataFrame], file_path: str, attributes=None, bgcolor: str = "white", show_legend: bool = True, **kwargs):
"""
Saves the visualization of the dotted chart
The dotted chart is a classic visualization of the events inside an event log across different dimensions. Each event of the event log is corresponding to a point. The dimensions are projected on a graph having:
- X axis: the values of the first dimension are represented there.
- Y-axis: the values of the second dimension are represented there.
- Color: the values of the third dimension are represented as different colors for the points of the dotted chart.
The values can be either string, numeric or date values, and are managed accordingly by the dotted chart.
The dotted chart can be built on different attributes. A convenient choice for the dotted chart is to visualize the distribution of cases and events over the time, with the following choices:
- X-axis: the timestamp of the event.
- Y-axis: the index of the case inside the event log.
- Color: the activity of the event.
The aforementioned choice permits to identify visually patterns such as:
- Batches.
- Variations in the case arrival rate.
- Variations in the case finishing rate.
:param log: Event log
:param file_path: Destination path
:param attributes: Attributes that should be used to construct the dotted chart (for example, ["concept:name", "org:resource"])
:param bgcolor: background color to be used in the dotted chart
:param show_legend: boolean (enables/disables showing the legend)
.. code-block:: python3
import pm4py
pm4py.save_vis_dotted_chart(dataframe, 'dotted.png', attributes=['time:timestamp', 'concept:name', 'org:resource'])
"""
file_path = str(file_path)
if check_is_pandas_dataframe(log):
check_pandas_dataframe_columns(log)
format = os.path.splitext(file_path)[1][1:].lower()
log, attributes = __dotted_attribute_selection(log, attributes)
parameters = {}
parameters["format"] = format
parameters["bgcolor"] = bgcolor
parameters["show_legend"] = show_legend
from pm4py.visualization.dotted_chart import visualizer as dotted_chart_visualizer
gviz = dotted_chart_visualizer.apply(log, attributes, parameters=parameters)
return dotted_chart_visualizer.save(gviz, file_path)
def view_sna(sna_metric: SNA, variant_str: Optional[str] = None):
"""
Represents a SNA metric (.html)
:param sna_metric: Values of the metric
:param variant_str: variant to be used (default: pyvis)
.. code-block:: python3
import pm4py
metric = pm4py.discover_subcontracting_network(dataframe, resource_key='org:resource', timestamp_key='time:timestamp', case_id_key='case:concept:name')
pm4py.view_sna(metric)
"""
if variant_str is None:
if constants.DEFAULT_GVIZ_VIEW == "matplotlib_view":
variant_str = "networkx"
else:
variant_str = "pyvis"
from pm4py.visualization.sna import visualizer as sna_visualizer
variant = sna_visualizer.Variants.PYVIS
if variant_str == "networkx":
variant = sna_visualizer.Variants.NETWORKX
gviz = sna_visualizer.apply(sna_metric, variant=variant)
sna_visualizer.view(gviz, variant=variant)
def save_vis_sna(sna_metric: SNA, file_path: str, variant_str: Optional[str] = None, **kwargs):
"""
Saves the visualization of a SNA metric in a .html file
:param sna_metric: Values of the metric
:param file_path: Destination path
:param variant_str: variant to be used (default: pyvis)
.. code-block:: python3
import pm4py
metric = pm4py.discover_subcontracting_network(dataframe, resource_key='org:resource', timestamp_key='time:timestamp', case_id_key='case:concept:name')
pm4py.save_vis_sna(metric, 'sna.png')
"""
file_path = str(file_path)
if variant_str is None:
if constants.DEFAULT_GVIZ_VIEW == "matplotlib_view":
variant_str = "networkx"
else:
variant_str = "pyvis"
from pm4py.visualization.sna import visualizer as sna_visualizer
variant = sna_visualizer.Variants.PYVIS
if variant_str == "networkx":
variant = sna_visualizer.Variants.NETWORKX
gviz = sna_visualizer.apply(sna_metric, variant=variant)
return sna_visualizer.save(gviz, file_path, variant=variant)
def view_case_duration_graph(log: Union[EventLog, pd.DataFrame], format: str = "png", activity_key="concept:name", timestamp_key="time:timestamp", case_id_key="case:concept:name"):
"""
Visualizes the case duration graph
:param log: Log object
:param format: Format of the visualization (png, svg, ...)
:param activity_key: attribute to be used as activity
:param case_id_key: attribute to be used as case identifier
:param timestamp_key: attribute to be used as timestamp
.. code-block:: python3
import pm4py
pm4py.view_case_duration_graph(dataframe, format='svg', activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
"""
format = str(format).lower()
if check_is_pandas_dataframe(log):
check_pandas_dataframe_columns(log, activity_key=activity_key, case_id_key=case_id_key, timestamp_key=timestamp_key)
from pm4py.statistics.traces.generic.pandas import case_statistics
graph = case_statistics.get_kde_caseduration(log, parameters=get_properties(log, activity_key=activity_key, case_id_key=case_id_key, timestamp_key=timestamp_key))
else:
from pm4py.statistics.traces.generic.log import case_statistics
graph = case_statistics.get_kde_caseduration(log, parameters=get_properties(log, activity_key=activity_key, case_id_key=case_id_key, timestamp_key=timestamp_key))
from pm4py.visualization.graphs import visualizer as graphs_visualizer
graph_vis = graphs_visualizer.apply(graph[0], graph[1], variant=graphs_visualizer.Variants.CASES,
parameters={"format": format})
graphs_visualizer.view(graph_vis)
def save_vis_case_duration_graph(log: Union[EventLog, pd.DataFrame], file_path: str, activity_key="concept:name", timestamp_key="time:timestamp", case_id_key="case:concept:name", **kwargs):
"""
Saves the case duration graph in the specified path
:param log: Log object
:param file_path: Destination path
:param activity_key: attribute to be used as activity
:param case_id_key: attribute to be used as case identifier
:param timestamp_key: attribute to be used as timestamp
.. code-block:: python3
import pm4py
pm4py.save_vis_case_duration_graph(dataframe, 'duration.png', activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
"""
file_path = str(file_path)
if check_is_pandas_dataframe(log):
check_pandas_dataframe_columns(log, activity_key=activity_key, case_id_key=case_id_key, timestamp_key=timestamp_key)
from pm4py.statistics.traces.generic.pandas import case_statistics
graph = case_statistics.get_kde_caseduration(log, parameters=get_properties(log, activity_key=activity_key, case_id_key=case_id_key, timestamp_key=timestamp_key))
else:
from pm4py.statistics.traces.generic.log import case_statistics
graph = case_statistics.get_kde_caseduration(log, parameters=get_properties(log, activity_key=activity_key, case_id_key=case_id_key, timestamp_key=timestamp_key))
format = os.path.splitext(file_path)[1][1:].lower()
from pm4py.visualization.graphs import visualizer as graphs_visualizer
graph_vis = graphs_visualizer.apply(graph[0], graph[1], variant=graphs_visualizer.Variants.CASES,
parameters={"format": format})
return graphs_visualizer.save(graph_vis, file_path)
def view_events_per_time_graph(log: Union[EventLog, pd.DataFrame], format: str = "png", activity_key="concept:name", timestamp_key="time:timestamp", case_id_key="case:concept:name"):
"""
Visualizes the events per time graph
:param log: Log object
:param format: Format of the visualization (png, svg, ...)
:param activity_key: attribute to be used as activity
:param case_id_key: attribute to be used as case identifier
:param timestamp_key: attribute to be used as timestamp
.. code-block:: python3
import pm4py
pm4py.view_events_per_time_graph(dataframe, format='svg', activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
"""
format = str(format).lower()
if check_is_pandas_dataframe(log):
check_pandas_dataframe_columns(log, activity_key=activity_key, case_id_key=case_id_key, timestamp_key=timestamp_key)
from pm4py.statistics.attributes.pandas import get as attributes_get
graph = attributes_get.get_kde_date_attribute(log, parameters=get_properties(log, activity_key=activity_key, case_id_key=case_id_key, timestamp_key=timestamp_key))
else:
from pm4py.statistics.attributes.log import get as attributes_get
graph = attributes_get.get_kde_date_attribute(log, parameters=get_properties(log, activity_key=activity_key, case_id_key=case_id_key, timestamp_key=timestamp_key))
from pm4py.visualization.graphs import visualizer as graphs_visualizer
graph_vis = graphs_visualizer.apply(graph[0], graph[1], variant=graphs_visualizer.Variants.DATES,
parameters={"format": format})
graphs_visualizer.view(graph_vis)
def save_vis_events_per_time_graph(log: Union[EventLog, pd.DataFrame], file_path: str, activity_key="concept:name", timestamp_key="time:timestamp", case_id_key="case:concept:name", **kwargs):
"""
Saves the events per time graph in the specified path
:param log: Log object
:param file_path: Destination path
:param activity_key: attribute to be used as activity
:param case_id_key: attribute to be used as case identifier
:param timestamp_key: attribute to be used as timestamp
.. code-block:: python3
import pm4py
pm4py.save_vis_events_per_time_graph(dataframe, 'ev_time.png', activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
"""
file_path = str(file_path)
if check_is_pandas_dataframe(log):
check_pandas_dataframe_columns(log, activity_key=activity_key, case_id_key=case_id_key, timestamp_key=timestamp_key)
from pm4py.statistics.attributes.pandas import get as attributes_get
graph = attributes_get.get_kde_date_attribute(log, attribute=timestamp_key, parameters=get_properties(log, activity_key=activity_key, case_id_key=case_id_key, timestamp_key=timestamp_key))
else:
from pm4py.statistics.attributes.log import get as attributes_get
graph = attributes_get.get_kde_date_attribute(log, attribute=timestamp_key, parameters=get_properties(log, activity_key=activity_key, case_id_key=case_id_key, timestamp_key=timestamp_key))
format = os.path.splitext(file_path)[1][1:].lower()
from pm4py.visualization.graphs import visualizer as graphs_visualizer
graph_vis = graphs_visualizer.apply(graph[0], graph[1], variant=graphs_visualizer.Variants.DATES,
parameters={"format": format})
return graphs_visualizer.save(graph_vis, file_path)
def view_performance_spectrum(log: Union[EventLog, pd.DataFrame], activities: List[str], format: str = "png", activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name", bgcolor: str = "white"):
"""
Displays the performance spectrum
The performance spectrum is a novel visualization of the performance of the process of the time elapsed between different activities in the process executions. The performance spectrum has initially been described in:
Denisov, Vadim, et al. "The Performance Spectrum Miner: Visual Analytics for Fine-Grained Performance Analysis of Processes." BPM (Dissertation/Demos/Industry). 2018.
:param perf_spectrum: Performance spectrum
:param format: Format of the visualization (png, svg ...)
:param activity_key: attribute to be used for the activity
:param timestamp_key: attribute to be used for the timestamp
:param case_id_key: attribute to be used as case identifier
:param activity_key: attribute to be used as activity
:param case_id_key: attribute to be used as case identifier
:param timestamp_key: attribute to be used as timestamp
:param bgcolor: Background color of the visualization (default: white)
.. code-block:: python3
import pm4py
pm4py.view_performance_spectrum(dataframe, ['Act. A', 'Act. C', 'Act. D'], format='svg', activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
"""
format = str(format).lower()
if check_is_pandas_dataframe(log):
check_pandas_dataframe_columns(log, activity_key=activity_key, case_id_key=case_id_key, timestamp_key=timestamp_key)
properties = get_properties(log, activity_key=activity_key, case_id_key=case_id_key, timestamp_key=timestamp_key)
from pm4py.algo.discovery.performance_spectrum import algorithm as performance_spectrum
perf_spectrum = performance_spectrum.apply(log, activities, parameters=properties)
from pm4py.visualization.performance_spectrum import visualizer as perf_spectrum_visualizer
from pm4py.visualization.performance_spectrum.variants import neato
gviz = perf_spectrum_visualizer.apply(perf_spectrum, parameters={neato.Parameters.FORMAT.value: format, "bgcolor": bgcolor})
perf_spectrum_visualizer.view(gviz)
def save_vis_performance_spectrum(log: Union[EventLog, pd.DataFrame], activities: List[str], file_path: str, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name", bgcolor: str = "white", **kwargs):
"""
Saves the visualization of the performance spectrum to a file
The performance spectrum is a novel visualization of the performance of the process of the time elapsed between different activities in the process executions. The performance spectrum has initially been described in:
Denisov, Vadim, et al. "The Performance Spectrum Miner: Visual Analytics for Fine-Grained Performance Analysis of Processes." BPM (Dissertation/Demos/Industry). 2018.
:param log: Event log
:param activities: List of activities (in order) that is used to build the performance spectrum
:param file_path: Destination path (including the extension)
:param activity_key: attribute to be used for the activity
:param timestamp_key: attribute to be used for the timestamp
:param case_id_key: attribute to be used as case identifier
:param bgcolor: Background color of the visualization (default: white)
.. code-block:: python3
import pm4py
pm4py.save_vis_performance_spectrum(dataframe, ['Act. A', 'Act. C', 'Act. D'], 'perf_spec.png', activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
"""
file_path = str(file_path)
if check_is_pandas_dataframe(log):
check_pandas_dataframe_columns(log, activity_key=activity_key, case_id_key=case_id_key, timestamp_key=timestamp_key)
properties = get_properties(log, activity_key=activity_key, case_id_key=case_id_key, timestamp_key=timestamp_key)
from pm4py.algo.discovery.performance_spectrum import algorithm as performance_spectrum
perf_spectrum = performance_spectrum.apply(log, activities, parameters=properties)
from pm4py.visualization.performance_spectrum import visualizer as perf_spectrum_visualizer
from pm4py.visualization.performance_spectrum.variants import neato
format = os.path.splitext(file_path)[1][1:].lower()
gviz = perf_spectrum_visualizer.apply(perf_spectrum, parameters={neato.Parameters.FORMAT.value: format, "bgcolor": bgcolor})
return perf_spectrum_visualizer.save(gviz, file_path)
def __builds_events_distribution_graph(log: Union[EventLog, pd.DataFrame], parameters, distr_type: str = "days_week"):
"""
Internal method to build the events distribution graph
"""
if distr_type == "days_month":
title = "Distribution of the Events over the Days of a Month";
x_axis = "Day of month";
y_axis = "Number of Events"
elif distr_type == "months":
title = "Distribution of the Events over the Months";
x_axis = "Month";
y_axis = "Number of Events"
elif distr_type == "years":
title = "Distribution of the Events over the Years";
x_axis = "Year";
y_axis = "Number of Events"
elif distr_type == "hours":
title = "Distribution of the Events over the Hours";
x_axis = "Hour (of day)";
y_axis = "Number of Events"
elif distr_type == "days_week":
title = "Distribution of the Events over the Days of a Week";
x_axis = "Day of the Week";
y_axis = "Number of Events"
elif distr_type == "weeks":
title = "Distribution of the Events over the Weeks of a Year";
x_axis = "Week of the Year";
y_axis = "Number of Events"
else:
raise Exception("unsupported distribution specified.")
if check_is_pandas_dataframe(log):
check_pandas_dataframe_columns(log)
from pm4py.statistics.attributes.pandas import get as attributes_get
x, y = attributes_get.get_events_distribution(log, distr_type=distr_type, parameters=parameters)
else:
from pm4py.statistics.attributes.log import get as attributes_get
x, y = attributes_get.get_events_distribution(log, distr_type=distr_type, parameters=parameters)
return title, x_axis, y_axis, x, y
def view_events_distribution_graph(log: Union[EventLog, pd.DataFrame], distr_type: str = "days_week", format="png", activity_key="concept:name", timestamp_key="time:timestamp", case_id_key="case:concept:name"):
"""
Shows the distribution of the events in the specified dimension
Observing the distribution of events over time permits to infer useful information about the work shifts, the working days, and the period of the year that are more or less busy.
:param log: Event log
:param distr_type: Type of distribution (default: days_week): - days_month => Gets the distribution of the events among the days of a month (from 1 to 31) - months => Gets the distribution of the events among the months (from 1 to 12) - years => Gets the distribution of the events among the years of the event log - hours => Gets the distribution of the events among the hours of a day (from 0 to 23) - days_week => Gets the distribution of the events among the days of a week (from Monday to Sunday) - weeks => Gets the distribution of the events among the weeks of a year (from 0 to 52)
:param format: Format of the visualization (default: png)
:param activity_key: attribute to be used as activity
:param case_id_key: attribute to be used as case identifier
:param timestamp_key: attribute to be used as timestamp
.. code-block:: python3
import pm4py
pm4py.view_events_distribution_graph(dataframe, format='svg', distr_type='days_week', activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
"""
format = str(format).lower()
if check_is_pandas_dataframe(log):
check_pandas_dataframe_columns(log, activity_key=activity_key, case_id_key=case_id_key, timestamp_key=timestamp_key)
parameters = get_properties(log, activity_key=activity_key, case_id_key=case_id_key, timestamp_key=timestamp_key)
title, x_axis, y_axis, x, y = __builds_events_distribution_graph(log, parameters, distr_type)
parameters["title"] = title;
parameters["x_axis"] = x_axis;
parameters["y_axis"] = y_axis;
parameters["format"] = format
from pm4py.visualization.graphs import visualizer as graphs_visualizer
gviz = graphs_visualizer.apply(x, y, variant=graphs_visualizer.Variants.BARPLOT, parameters=parameters)
graphs_visualizer.view(gviz)
def save_vis_events_distribution_graph(log: Union[EventLog, pd.DataFrame], file_path: str,
distr_type: str = "days_week", activity_key="concept:name", timestamp_key="time:timestamp", case_id_key="case:concept:name", **kwargs):
"""
Saves the distribution of the events in a picture file
Observing the distribution of events over time permits to infer useful information about the work shifts, the working days, and the period of the year that are more or less busy.
:param log: Event log
:param file_path: Destination path (including the extension)
:param distr_type: Type of distribution (default: days_week): - days_month => Gets the distribution of the events among the days of a month (from 1 to 31) - months => Gets the distribution of the events among the months (from 1 to 12) - years => Gets the distribution of the events among the years of the event log - hours => Gets the distribution of the events among the hours of a day (from 0 to 23) - days_week => Gets the distribution of the events among the days of a week (from Monday to Sunday)
:param activity_key: attribute to be used as activity
:param case_id_key: attribute to be used as case identifier
:param timestamp_key: attribute to be used as timestamp
.. code-block:: python3
import pm4py
pm4py.save_vis_events_distribution_graph(dataframe, 'ev_distr_graph.png', distr_type='days_week', activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
"""
file_path = str(file_path)
if check_is_pandas_dataframe(log):
check_pandas_dataframe_columns(log, activity_key=activity_key, case_id_key=case_id_key, timestamp_key=timestamp_key)
format = os.path.splitext(file_path)[1][1:].lower()
parameters = get_properties(log, activity_key=activity_key, case_id_key=case_id_key, timestamp_key=timestamp_key)
title, x_axis, y_axis, x, y = __builds_events_distribution_graph(log, parameters, distr_type)
parameters["title"] = title;
parameters["x_axis"] = x_axis;
parameters["y_axis"] = y_axis;
parameters["format"] = format
from pm4py.visualization.graphs import visualizer as graphs_visualizer
gviz = graphs_visualizer.apply(x, y, variant=graphs_visualizer.Variants.BARPLOT, parameters=parameters)
return graphs_visualizer.save(gviz, file_path)
def view_ocdfg(ocdfg: Dict[str, Any], annotation: str = "frequency", act_metric: str = "events", edge_metric="event_couples", act_threshold: int = 0, edge_threshold: int = 0, performance_aggregation: str = "mean", format: str = constants.DEFAULT_FORMAT_GVIZ_VIEW, bgcolor: str = "white", rankdir: str = constants.DEFAULT_RANKDIR_GVIZ):
"""
Views an OC-DFG (object-centric directly-follows graph) with the provided configuration.
Object-centric directly-follows multigraphs are a composition of directly-follows graphs for the single object type, which can be annotated with different metrics considering the entities of an object-centric event log (i.e., events, unique objects, total objects).
:param ocdfg: Object-centric directly-follows graph
:param annotation: The annotation to use for the visualization. Values: - "frequency": frequency annotation - "performance": performance annotation
:param act_metric: The metric to use for the activities. Available values: - "events" => number of events (default) - "unique_objects" => number of unique objects - "total_objects" => number of total objects
:param edge_metric: The metric to use for the edges. Available values: - "event_couples" => number of event couples (default) - "unique_objects" => number of unique objects - "total_objects" => number of total objects
:param act_threshold: The threshold to apply on the activities frequency (default: 0). Only activities having a frequency >= than this are kept in the graph.
:param edge_threshold: The threshold to apply on the edges frequency (default 0). Only edges having a frequency >= than this are kept in the graph.
:param performance_aggregation: The aggregation measure to use for the performance: mean, median, min, max, sum
:param format: The format of the output visualization (if html is provided, GraphvizJS is used to render the visualization in an HTML page)
:param bgcolor: Background color of the visualization (default: white)
:param rankdir: sets the direction of the graph ("LR" for left-to-right; "TB" for top-to-bottom)
.. code-block:: python3
import pm4py
ocdfg = pm4py.discover_ocdfg(ocel)
pm4py.view_ocdfg(ocdfg, annotation='frequency', format='svg')
"""
format = str(format).lower()
from pm4py.visualization.ocel.ocdfg import visualizer
from pm4py.visualization.ocel.ocdfg.variants import classic
parameters = {}
parameters[classic.Parameters.FORMAT] = format
parameters[classic.Parameters.ANNOTATION] = annotation
parameters[classic.Parameters.ACT_METRIC] = act_metric
parameters[classic.Parameters.EDGE_METRIC] = edge_metric
parameters[classic.Parameters.ACT_THRESHOLD] = act_threshold
parameters[classic.Parameters.EDGE_THRESHOLD] = edge_threshold
parameters[classic.Parameters.PERFORMANCE_AGGREGATION_MEASURE] = performance_aggregation
parameters["bgcolor"] = bgcolor
parameters["rankdir"] = rankdir
gviz = classic.apply(ocdfg, parameters=parameters)
visualizer.view(gviz)
def save_vis_ocdfg(ocdfg: Dict[str, Any], file_path: str, annotation: str = "frequency", act_metric: str = "events", edge_metric="event_couples", act_threshold: int = 0, edge_threshold: int = 0, performance_aggregation: str = "mean", bgcolor: str = "white", rankdir: str = constants.DEFAULT_RANKDIR_GVIZ, **kwargs):
"""
Saves the visualization of an OC-DFG (object-centric directly-follows graph) with the provided configuration.
Object-centric directly-follows multigraphs are a composition of directly-follows graphs for the single object type, which can be annotated with different metrics considering the entities of an object-centric event log (i.e., events, unique objects, total objects).
:param ocdfg: Object-centric directly-follows graph
:param file_path: Destination path (including the extension)
:param annotation: The annotation to use for the visualization. Values: - "frequency": frequency annotation - "performance": performance annotation
:param act_metric: The metric to use for the activities. Available values: - "events" => number of events (default) - "unique_objects" => number of unique objects - "total_objects" => number of total objects
:param edge_metric: The metric to use for the edges. Available values: - "event_couples" => number of event couples (default) - "unique_objects" => number of unique objects - "total_objects" => number of total objects
:param act_threshold: The threshold to apply on the activities frequency (default: 0). Only activities having a frequency >= than this are kept in the graph.
:param edge_threshold: The threshold to apply on the edges frequency (default 0). Only edges having a frequency >= than this are kept in the graph.
:param performance_aggregation: The aggregation measure to use for the performance: mean, median, min, max, sum
:param bgcolor: Background color of the visualization (default: white)
:param rankdir: sets the direction of the graph ("LR" for left-to-right; "TB" for top-to-bottom)
.. code-block:: python3
import pm4py
ocdfg = pm4py.discover_ocdfg(ocel)
pm4py.save_vis_ocdfg(ocdfg, 'ocdfg.png', annotation='frequency')
"""
file_path = str(file_path)
format = os.path.splitext(file_path)[1][1:].lower()
from pm4py.visualization.ocel.ocdfg import visualizer
from pm4py.visualization.ocel.ocdfg.variants import classic
parameters = {}
parameters[classic.Parameters.FORMAT] = format
parameters[classic.Parameters.ANNOTATION] = annotation
parameters[classic.Parameters.ACT_METRIC] = act_metric
parameters[classic.Parameters.EDGE_METRIC] = edge_metric
parameters[classic.Parameters.ACT_THRESHOLD] = act_threshold
parameters[classic.Parameters.EDGE_THRESHOLD] = edge_threshold
parameters[classic.Parameters.PERFORMANCE_AGGREGATION_MEASURE] = performance_aggregation
parameters["bgcolor"] = bgcolor
parameters["rankdir"] = rankdir
gviz = classic.apply(ocdfg, parameters=parameters)
return visualizer.save(gviz, file_path)
def view_ocpn(ocpn: Dict[str, Any], format: str = constants.DEFAULT_FORMAT_GVIZ_VIEW, bgcolor: str = "white", rankdir: str = constants.DEFAULT_RANKDIR_GVIZ):
"""
Visualizes on the screen the object-centric Petri net
:param ocpn: Object-centric Petri net
:param format: Format of the visualization (if html is provided, GraphvizJS is used to render the visualization in an HTML page)
:param bgcolor: Background color of the visualization (default: white)
:param rankdir: sets the direction of the graph ("LR" for left-to-right; "TB" for top-to-bottom)
.. code-block:: python3
import pm4py
ocpn = pm4py.discover_oc_petri_net(ocel)
pm4py.view_ocpn(ocpn, format='svg')
"""
format = str(format).lower()
from pm4py.visualization.ocel.ocpn import visualizer as ocpn_visualizer
gviz = ocpn_visualizer.apply(ocpn, parameters={"format": format, "bgcolor": bgcolor, "rankdir": rankdir})
ocpn_visualizer.view(gviz)
def save_vis_ocpn(ocpn: Dict[str, Any], file_path: str, bgcolor: str = "white", rankdir: str = constants.DEFAULT_RANKDIR_GVIZ, **kwargs):
"""
Saves the visualization of the object-centric Petri net into a file
:param ocpn: Object-centric Petri net
:param file_path: Target path of the visualization
:param bgcolor: Background color of the visualization (default: white)
:param rankdir: sets the direction of the graph ("LR" for left-to-right; "TB" for top-to-bottom)
.. code-block:: python3
import pm4py
ocpn = pm4py.discover_oc_petri_net(ocel)
pm4py.save_vis_ocpn(ocpn, 'ocpn.png')
"""
file_path = str(file_path)
format = os.path.splitext(file_path)[1][1:].lower()
from pm4py.visualization.ocel.ocpn import visualizer as ocpn_visualizer
gviz = ocpn_visualizer.apply(ocpn, parameters={"format": format, "bgcolor": bgcolor, "rankdir": rankdir})
return ocpn_visualizer.save(gviz, file_path)
def view_network_analysis(network_analysis: Dict[Tuple[str, str], Dict[str, Any]], variant: str = "frequency", format: str = constants.DEFAULT_FORMAT_GVIZ_VIEW, activity_threshold: int = 1, edge_threshold: int = 1, bgcolor: str = "white"):
"""
Visualizes the network analysis
:param network_analysis: Network analysis
:param variant: Variant of the visualization: - frequency (if the discovered network analysis contains the frequency of the interactions) - performance (if the discovered network analysis contains the performance of the interactions)
:param format: Format of the visualization (if html is provided, GraphvizJS is used to render the visualization in an HTML page)
:param activity_threshold: The minimum number of occurrences for an activity to be included (default: 1)
:param edge_threshold: The minimum number of occurrences for an edge to be included (default: 1)
:param bgcolor: Background color of the visualization (default: white)
.. code-block:: python3
import pm4py
net_ana = pm4py.discover_network_analysis(dataframe, out_column='case:concept:name', in_column='case:concept:name', node_column_source='org:resource', node_column_target='org:resource', edge_column='concept:name')
pm4py.view_network_analysis(net_ana, format='svg')
"""
format = str(format).lower()
from pm4py.visualization.network_analysis import visualizer as network_analysis_visualizer
variant = network_analysis_visualizer.Variants.PERFORMANCE if variant == "performance" else network_analysis_visualizer.Variants.FREQUENCY
gviz = network_analysis_visualizer.apply(network_analysis, variant=variant, parameters={"format": format, "activity_threshold": activity_threshold, "edge_threshold": edge_threshold, "bgcolor": bgcolor})
network_analysis_visualizer.view(gviz)
def save_vis_network_analysis(network_analysis: Dict[Tuple[str, str], Dict[str, Any]], file_path: str, variant: str = "frequency", activity_threshold: int = 1, edge_threshold: int = 1, bgcolor: str = "white", **kwargs):
"""
Saves the visualization of the network analysis
:param network_analysis: Network analysis
:param file_path: Target path of the visualization
:param variant: Variant of the visualization: - frequency (if the discovered network analysis contains the frequency of the interactions) - performance (if the discovered network analysis contains the performance of the interactions)
:param activity_threshold: The minimum number of occurrences for an activity to be included (default: 1)
:param edge_threshold: The minimum number of occurrences for an edge to be included (default: 1)
:param bgcolor: Background color of the visualization (default: white)
.. code-block:: python3
import pm4py
net_ana = pm4py.discover_network_analysis(dataframe, out_column='case:concept:name', in_column='case:concept:name', node_column_source='org:resource', node_column_target='org:resource', edge_column='concept:name')
pm4py.save_vis_network_analysis(net_ana, 'net_ana.png')
"""
file_path = str(file_path)
format = os.path.splitext(file_path)[1][1:].lower()
from pm4py.visualization.network_analysis import visualizer as network_analysis_visualizer
variant = network_analysis_visualizer.Variants.PERFORMANCE if variant == "performance" else network_analysis_visualizer.Variants.FREQUENCY
gviz = network_analysis_visualizer.apply(network_analysis, variant=variant, parameters={"format": format, "activity_threshold": activity_threshold, "edge_threshold": edge_threshold, "bgcolor": bgcolor})
return network_analysis_visualizer.save(gviz, file_path)
def view_transition_system(transition_system: TransitionSystem, format: str = constants.DEFAULT_FORMAT_GVIZ_VIEW, bgcolor: str = "white"):
"""
Views a transition system
:param transition_system: Transition system
:param format: Format of the visualization (if html is provided, GraphvizJS is used to render the visualization in an HTML page)
:param bgcolor: Background color of the visualization (default: white)
.. code-block:: python3
import pm4py
transition_system = pm4py.discover_transition_system(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
pm4py.view_transition_system(transition_system, format='svg')
"""
format = str(format).lower()
from pm4py.visualization.transition_system import visualizer as ts_visualizer
gviz = ts_visualizer.apply(transition_system, parameters={"format": format, "bgcolor": bgcolor})
ts_visualizer.view(gviz)
def save_vis_transition_system(transition_system: TransitionSystem, file_path: str, bgcolor: str = "white", **kwargs):
"""
Persists the visualization of a transition system
:param transition_system: Transition system
:param file_path: Destination path
:param bgcolor: Background color of the visualization (default: white)
.. code-block:: python3
import pm4py
transition_system = pm4py.discover_transition_system(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
pm4py.save_vis_transition_system(transition_system, 'trans_system.png')
"""
file_path = str(file_path)
format = os.path.splitext(file_path)[1][1:].lower()
from pm4py.visualization.transition_system import visualizer as ts_visualizer
gviz = ts_visualizer.apply(transition_system, parameters={"format": format, "bgcolor": bgcolor})
return ts_visualizer.save(gviz, file_path)
def view_prefix_tree(trie: Trie, format: str = constants.DEFAULT_FORMAT_GVIZ_VIEW, bgcolor: str = "white"):
"""
Views a prefix tree
:param prefix_tree: Prefix tree
:param format: Format of the visualization (if html is provided, GraphvizJS is used to render the visualization in an HTML page)
:param bgcolor: Background color of the visualization (default: white)
.. code-block:: python3
import pm4py
prefix_tree = pm4py.discover_prefix_tree(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
pm4py.view_prefix_tree(prefix_tree, format='svg')
"""
format = str(format).lower()
from pm4py.visualization.trie import visualizer as trie_visualizer
gviz = trie_visualizer.apply(trie, parameters={"format": format, "bgcolor": bgcolor})
trie_visualizer.view(gviz)
def save_vis_prefix_tree(trie: Trie, file_path: str, bgcolor: str = "white", **kwargs):
"""
Persists the visualization of a prefix tree
:param prefix_tree: Prefix tree
:param file_path: Destination path
:param bgcolor: Background color of the visualization (default: white)
.. code-block:: python3
import pm4py
prefix_tree = pm4py.discover_prefix_tree(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')
pm4py.save_vis_prefix_tree(prefix_tree, 'trie.png')
"""
file_path = str(file_path)
format = os.path.splitext(file_path)[1][1:].lower()
from pm4py.visualization.trie import visualizer as trie_visualizer
gviz = trie_visualizer.apply(trie, parameters={"format": format, "bgcolor": bgcolor})
return trie_visualizer.save(gviz, file_path)
def view_alignments(log: Union[EventLog, pd.DataFrame], aligned_traces: List[Dict[str, Any]], format: str = "png"):
"""
Views the alignment table as a figure
:param log: event log
:param aligned_traces: results of an alignment
:param format: format of the visualization (default: png)
.. code-block:: python3
import pm4py
log = pm4py.read_xes('tests/input_data/running-example.xes')
net, im, fm = pm4py.discover_petri_net_inductive(log)
aligned_traces = pm4py.conformance_diagnostics_alignments(log, net, im, fm)
pm4py.view_alignments(log, aligned_traces, format='svg')
"""
format = str(format).lower()
from pm4py.visualization.align_table import visualizer
gviz = visualizer.apply(log, aligned_traces, parameters={"format": format})
visualizer.view(gviz)
def save_vis_alignments(log: Union[EventLog, pd.DataFrame], aligned_traces: List[Dict[str, Any]], file_path: str, **kwargs):
"""
Saves an alignment table's figure in the disk
:param log: event log
:param aligned_traces: results of an alignment
:param file_path: target path in the disk
.. code-block:: python3
import pm4py
log = pm4py.read_xes('tests/input_data/running-example.xes')
net, im, fm = pm4py.discover_petri_net_inductive(log)
aligned_traces = pm4py.conformance_diagnostics_alignments(log, net, im, fm)
pm4py.save_vis_alignments(log, aligned_traces, 'output.svg')
"""
file_path = str(file_path)
format = os.path.splitext(file_path)[1][1:].lower()
from pm4py.visualization.align_table import visualizer
gviz = visualizer.apply(log, aligned_traces, parameters={"format": format})
return visualizer.save(gviz, file_path)
def view_footprints(footprints: Union[Tuple[Dict[str, Any], Dict[str, Any]], Dict[str, Any]], format: str = "png"):
"""
Views the footprints as a figure
:param footprints: footprints
:param format: format of the visualization (default: png)
.. code-block:: python3
import pm4py
log = pm4py.read_xes('tests/input_data/running-example.xes')
fp_log = pm4py.discover_footprints(log)
pm4py.view_footprints(fp_log, format='svg')
"""
format = str(format).lower()
from pm4py.visualization.footprints import visualizer as fps_visualizer
if isinstance(footprints, dict):
gviz = fps_visualizer.apply(footprints, parameters={"format": format})
else:
gviz = fps_visualizer.apply(footprints[0], footprints[1], variant=fps_visualizer.Variants.COMPARISON_SYMMETRIC, parameters={"format": format})
fps_visualizer.view(gviz)
def save_vis_footprints(footprints: Union[Tuple[Dict[str, Any], Dict[str, Any]], Dict[str, Any]], file_path: str, **kwargs):
"""
Saves the footprints' visualization on disk
:param footprints: footprints
:param file_path: target path of the visualization
.. code-block:: python3
import pm4py
log = pm4py.read_xes('tests/input_data/running-example.xes')
fp_log = pm4py.discover_footprints(log)
pm4py.save_vis_footprints(fp_log, 'output.svg')
"""
file_path = str(file_path)
format = os.path.splitext(file_path)[1][1:].lower()
from pm4py.visualization.footprints import visualizer as fps_visualizer
if isinstance(footprints, dict):
gviz = fps_visualizer.apply(footprints, parameters={"format": format})
else:
gviz = fps_visualizer.apply(footprints[0], footprints[1], variant=fps_visualizer.Variants.COMPARISON_SYMMETRIC, parameters={"format": format})
return fps_visualizer.save(gviz, file_path)
def view_powl(powl: POWL, format: str = constants.DEFAULT_FORMAT_GVIZ_VIEW, bgcolor: str = "white", variant_str: str = "basic"):
"""
Perform a visualization of a POWL model.
Reference paper:
Kourani, Humam, and Sebastiaan J. van Zelst. "POWL: partially ordered workflow language." International Conference on Business Process Management. Cham: Springer Nature Switzerland, 2023.
:param powl: POWL model
:param format: format of the visualization (default: png)
:param bgcolor: background color of the visualization (default: white)
:param rankdir: sets the direction of the graph ("LR" for left-to-right; "TB" for top-to-bottom)
:param variant_str: variant of the visualization to be used (values: "basic", "net")
.. code-block:: python3
import pm4py
log = pm4py.read_xes('tests/input_data/running-example.xes')
powl_model = pm4py.discover_powl(log)
pm4py.view_powl(powl_model, format='svg', variant_str='basic')
pm4py.view_powl(powl_model, format='svg', variant_str='net')
"""
from pm4py.visualization.powl.visualizer import POWLVisualizationVariants
variant = POWLVisualizationVariants.BASIC
if variant_str == "basic":
variant = POWLVisualizationVariants.BASIC
elif variant_str == "net":
variant = POWLVisualizationVariants.NET
format = str(format).lower()
parameters = parameters={"format": format, "bgcolor": bgcolor}
from pm4py.visualization.powl import visualizer as powl_visualizer
gviz = powl_visualizer.apply(powl, variant=variant, parameters=parameters)
powl_visualizer.view(gviz, parameters=parameters)
def save_vis_powl(powl: POWL, file_path: str, bgcolor: str = "white", rankdir: str = "TB", **kwargs):
"""
Saves the visualization of a POWL model.
Reference paper:
Kourani, Humam, and Sebastiaan J. van Zelst. "POWL: partially ordered workflow language." International Conference on Business Process Management. Cham: Springer Nature Switzerland, 2023.
:param powl: POWL model
:param file_path: target path of the visualization
:param bgcolor: background color of the visualization (default: white)
:param rankdir: sets the direction of the graph ("LR" for left-to-right; "TB" for top-to-bottom)
.. code-block:: python3
import pm4py
log = pm4py.read_xes('tests/input_data/running-example.xes')
powl_model = pm4py.discover_powl(log)
pm4py.save_vis_powl(powl_model, 'powl.png')
"""
file_path = str(file_path)
format = os.path.splitext(file_path)[1][1:].lower()
parameters = {"format": format, "bgcolor": bgcolor, "rankdir": rankdir}
from pm4py.visualization.powl import visualizer as powl_visualizer
gviz = powl_visualizer.apply(powl, parameters=parameters)
return powl_visualizer.save(gviz, file_path, parameters=parameters)
def view_object_graph(ocel: OCEL, graph: Set[Tuple[str, str]], format: str = constants.DEFAULT_FORMAT_GVIZ_VIEW, bgcolor: str = "white", rankdir: str = constants.DEFAULT_RANKDIR_GVIZ):
"""
Visualizes an object graph on the screen
:param ocel: object-centric event log
:param graph: object graph
:param format: format of the visualization (if html is provided, GraphvizJS is used to render the visualization in an HTML page)
:param bgcolor: Background color of the visualization (default: white)
:param rankdir: sets the direction of the graph ("LR" for left-to-right; "TB" for top-to-bottom)
.. code-block:: python3
import pm4py
ocel = pm4py.read_ocel('trial.ocel')
obj_graph = pm4py.ocel_discover_objects_graph(ocel, graph_type='object_interaction')
pm4py.view_object_graph(ocel, obj_graph, format='svg')
"""
format = str(format).lower()
from pm4py.visualization.ocel.object_graph import visualizer as obj_graph_vis
gviz = obj_graph_vis.apply(ocel, graph, parameters={"format": format, "bgcolor": bgcolor, "rankdir": rankdir})
obj_graph_vis.view(gviz)
def save_vis_object_graph(ocel: OCEL, graph: Set[Tuple[str, str]], file_path: str, bgcolor: str = "white", rankdir: str = constants.DEFAULT_RANKDIR_GVIZ, **kwargs):
"""
Saves the visualization of an object graph
:param ocel: object-centric event log
:param graph: object graph
:param file_path: Destination path
:param bgcolor: Background color of the visualization (default: white)
:param rankdir: sets the direction of the graph ("LR" for left-to-right; "TB" for top-to-bottom)
.. code-block:: python3
import pm4py
ocel = pm4py.read_ocel('trial.ocel')
obj_graph = pm4py.ocel_discover_objects_graph(ocel, graph_type='object_interaction')
pm4py.save_vis_object_graph(ocel, obj_graph, 'trial.pdf')
"""
file_path = str(file_path)
format = os.path.splitext(file_path)[1][1:].lower()
from pm4py.visualization.ocel.object_graph import visualizer as obj_graph_vis
gviz = obj_graph_vis.apply(ocel, graph, parameters={"format": format, "bgcolor": bgcolor, "rankdir": rankdir})
return obj_graph_vis.save(gviz, file_path)
|