File size: 49,414 Bytes
8097001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "# Handling Event Data\n",
    "*by: Sebastiaan J. van Zelst*"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "notes"
    }
   },
   "source": [
    "Process mining exploits Event Logs to generate knowledge of a process.\n",
    "A wide variety of information systems, e.g., SAP, ORACLE, SalesForce, etc., allow us to extract, in one way or the other,\n",
    "event logs similar to the example event logs.\n",
    "All the examples we show in this notebook and all algorithms implemented in pm4py assume that we have already extracted\n",
    "the event data into an appropriate event log format.\n",
    "Hence, the core of pm4py does not support any data extraction features.\n",
    "\n",
    "In order to support interoperability between different process mining tools and libraries, two standard data formats are\n",
    "used to capture event logs, i.e., Comma Separated Value (CSV) files and eXtensible Event Stream (XES) files.\n",
    "CSV files resemble the example tables shown in the previous section, i.e., Table 1 and Table 2. Each line in such a file\n",
    "describes an event that occurred. The columns represent the same type of data, as shown in the examples, e.g., the case\n",
    "for which the event occurred, the activity, the timestamp, the resource executing the activity, etc.\n",
    "The XES file format is an XML-based format that allows us to describe process behavior.\n",
    "We will not go into specific details w.r.t. the format of XES files, i.e., we refer to http://xes-standard.org/ for an\n",
    "overview.\n",
    "\n",
    "In this tutorial, we will use an oftenly used dummy example event log to explain the basic process mining operations.\n",
    "The process that we are considering is a simplified process related to customer complaint handling, i.e., taken from the\n",
    "book of van der Aalst (https://www.springer.com/de/book/9783662498507). The process, and the event data we are going to\n",
    "use, looks as follows."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "![Running example BPMN-based process model describing the behavior of the simple process that we use in this tutorial](img/bpmn_running_example.png)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "## Importing CSV Files"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "notes"
    }
   },
   "source": [
    "Let’s get started!\n",
    "We have prepared a small sample event log, containing behavior similar equal to the process model in Figure 3.\n",
    "You can find the sample event log [here](data/running_example.csv).\n",
    "\n",
    "We are going to load the event data, and, we are going to count how many cases are present in the event log, as well as\n",
    "the number of events. Note that, for all this, we are effectively using a third-party library called pandas.\n",
    "We do so because pandas is the de-facto standard of loading/manipulating csv-based data.\n",
    "Hence, any process mining algorithm implemented in pm4py, using an event log as an input, can work directly with a\n",
    "pandas file!\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "pycharm": {
     "name": "#%%\n"
    },
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": "    case_id            activity                  timestamp  costs org:resource\n0         3    register request  2010-12-30 14:32:00+01:00     50         Pete\n1         3    examine casually  2010-12-30 15:06:00+01:00    400         Mike\n2         3        check ticket  2010-12-30 16:34:00+01:00    100        Ellen\n3         3              decide  2011-01-06 09:18:00+01:00    200         Sara\n4         3  reinitiate request  2011-01-06 12:18:00+01:00    200         Sara\n5         3  examine thoroughly  2011-01-06 13:06:00+01:00    400         Sean\n6         3        check ticket  2011-01-08 11:43:00+01:00    100         Pete\n7         3              decide  2011-01-09 09:55:00+01:00    200         Sara\n8         3    pay compensation  2011-01-15 10:45:00+01:00    200        Ellen\n9         2    register request  2010-12-30 11:32:00+01:00     50         Mike\n10        2        check ticket  2010-12-30 12:12:00+01:00    100         Mike\n11        2    examine casually  2010-12-30 14:16:00+01:00    400         Sean\n12        2              decide  2011-01-05 11:22:00+01:00    200         Sara\n13        2    pay compensation  2011-01-08 12:05:00+01:00    200        Ellen\n14        1    register request  2010-12-30 11:02:00+01:00     50         Pete\n15        1  examine thoroughly  2010-12-31 10:06:00+01:00    400          Sue\n16        1        check ticket  2011-01-05 15:12:00+01:00    100         Mike\n17        1              decide  2011-01-06 11:18:00+01:00    200         Sara\n18        1      reject request  2011-01-07 14:24:00+01:00    200         Pete\n19        6    register request  2011-01-06 15:02:00+01:00     50         Mike\n20        6    examine casually  2011-01-06 16:06:00+01:00    400        Ellen\n21        6        check ticket  2011-01-07 16:22:00+01:00    100         Mike\n22        6              decide  2011-01-07 16:52:00+01:00    200         Sara\n23        6    pay compensation  2011-01-16 11:47:00+01:00    200         Mike\n24        5    register request  2011-01-06 09:02:00+01:00     50        Ellen\n25        5    examine casually  2011-01-07 10:16:00+01:00    400         Mike\n26        5        check ticket  2011-01-08 11:22:00+01:00    100         Pete\n27        5              decide  2011-01-10 13:28:00+01:00    200         Sara\n28        5  reinitiate request  2011-01-11 16:18:00+01:00    200         Sara\n29        5        check ticket  2011-01-14 14:33:00+01:00    100        Ellen\n30        5    examine casually  2011-01-16 15:50:00+01:00    400         Mike\n31        5              decide  2011-01-19 11:18:00+01:00    200         Sara\n32        5  reinitiate request  2011-01-20 12:48:00+01:00    200         Sara\n33        5    examine casually  2011-01-21 09:06:00+01:00    400          Sue\n34        5        check ticket  2011-01-21 11:34:00+01:00    100         Pete\n35        5              decide  2011-01-23 13:12:00+01:00    200         Sara\n36        5      reject request  2011-01-24 14:56:00+01:00    200         Mike\n37        4    register request  2011-01-06 15:02:00+01:00     50         Pete\n38        4        check ticket  2011-01-07 12:06:00+01:00    100         Mike\n39        4  examine thoroughly  2011-01-08 14:43:00+01:00    400         Sean\n40        4              decide  2011-01-09 12:02:00+01:00    200         Sara\n41        4      reject request  2011-01-12 15:44:00+01:00    200        Ellen",
      "text/html": "<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>case_id</th>\n      <th>activity</th>\n      <th>timestamp</th>\n      <th>costs</th>\n      <th>org:resource</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>0</th>\n      <td>3</td>\n      <td>register request</td>\n      <td>2010-12-30 14:32:00+01:00</td>\n      <td>50</td>\n      <td>Pete</td>\n    </tr>\n    <tr>\n      <th>1</th>\n      <td>3</td>\n      <td>examine casually</td>\n      <td>2010-12-30 15:06:00+01:00</td>\n      <td>400</td>\n      <td>Mike</td>\n    </tr>\n    <tr>\n      <th>2</th>\n      <td>3</td>\n      <td>check ticket</td>\n      <td>2010-12-30 16:34:00+01:00</td>\n      <td>100</td>\n      <td>Ellen</td>\n    </tr>\n    <tr>\n      <th>3</th>\n      <td>3</td>\n      <td>decide</td>\n      <td>2011-01-06 09:18:00+01:00</td>\n      <td>200</td>\n      <td>Sara</td>\n    </tr>\n    <tr>\n      <th>4</th>\n      <td>3</td>\n      <td>reinitiate request</td>\n      <td>2011-01-06 12:18:00+01:00</td>\n      <td>200</td>\n      <td>Sara</td>\n    </tr>\n    <tr>\n      <th>5</th>\n      <td>3</td>\n      <td>examine thoroughly</td>\n      <td>2011-01-06 13:06:00+01:00</td>\n      <td>400</td>\n      <td>Sean</td>\n    </tr>\n    <tr>\n      <th>6</th>\n      <td>3</td>\n      <td>check ticket</td>\n      <td>2011-01-08 11:43:00+01:00</td>\n      <td>100</td>\n      <td>Pete</td>\n    </tr>\n    <tr>\n      <th>7</th>\n      <td>3</td>\n      <td>decide</td>\n      <td>2011-01-09 09:55:00+01:00</td>\n      <td>200</td>\n      <td>Sara</td>\n    </tr>\n    <tr>\n      <th>8</th>\n      <td>3</td>\n      <td>pay compensation</td>\n      <td>2011-01-15 10:45:00+01:00</td>\n      <td>200</td>\n      <td>Ellen</td>\n    </tr>\n    <tr>\n      <th>9</th>\n      <td>2</td>\n      <td>register request</td>\n      <td>2010-12-30 11:32:00+01:00</td>\n      <td>50</td>\n      <td>Mike</td>\n    </tr>\n    <tr>\n      <th>10</th>\n      <td>2</td>\n      <td>check ticket</td>\n      <td>2010-12-30 12:12:00+01:00</td>\n      <td>100</td>\n      <td>Mike</td>\n    </tr>\n    <tr>\n      <th>11</th>\n      <td>2</td>\n      <td>examine casually</td>\n      <td>2010-12-30 14:16:00+01:00</td>\n      <td>400</td>\n      <td>Sean</td>\n    </tr>\n    <tr>\n      <th>12</th>\n      <td>2</td>\n      <td>decide</td>\n      <td>2011-01-05 11:22:00+01:00</td>\n      <td>200</td>\n      <td>Sara</td>\n    </tr>\n    <tr>\n      <th>13</th>\n      <td>2</td>\n      <td>pay compensation</td>\n      <td>2011-01-08 12:05:00+01:00</td>\n      <td>200</td>\n      <td>Ellen</td>\n    </tr>\n    <tr>\n      <th>14</th>\n      <td>1</td>\n      <td>register request</td>\n      <td>2010-12-30 11:02:00+01:00</td>\n      <td>50</td>\n      <td>Pete</td>\n    </tr>\n    <tr>\n      <th>15</th>\n      <td>1</td>\n      <td>examine thoroughly</td>\n      <td>2010-12-31 10:06:00+01:00</td>\n      <td>400</td>\n      <td>Sue</td>\n    </tr>\n    <tr>\n      <th>16</th>\n      <td>1</td>\n      <td>check ticket</td>\n      <td>2011-01-05 15:12:00+01:00</td>\n      <td>100</td>\n      <td>Mike</td>\n    </tr>\n    <tr>\n      <th>17</th>\n      <td>1</td>\n      <td>decide</td>\n      <td>2011-01-06 11:18:00+01:00</td>\n      <td>200</td>\n      <td>Sara</td>\n    </tr>\n    <tr>\n      <th>18</th>\n      <td>1</td>\n      <td>reject request</td>\n      <td>2011-01-07 14:24:00+01:00</td>\n      <td>200</td>\n      <td>Pete</td>\n    </tr>\n    <tr>\n      <th>19</th>\n      <td>6</td>\n      <td>register request</td>\n      <td>2011-01-06 15:02:00+01:00</td>\n      <td>50</td>\n      <td>Mike</td>\n    </tr>\n    <tr>\n      <th>20</th>\n      <td>6</td>\n      <td>examine casually</td>\n      <td>2011-01-06 16:06:00+01:00</td>\n      <td>400</td>\n      <td>Ellen</td>\n    </tr>\n    <tr>\n      <th>21</th>\n      <td>6</td>\n      <td>check ticket</td>\n      <td>2011-01-07 16:22:00+01:00</td>\n      <td>100</td>\n      <td>Mike</td>\n    </tr>\n    <tr>\n      <th>22</th>\n      <td>6</td>\n      <td>decide</td>\n      <td>2011-01-07 16:52:00+01:00</td>\n      <td>200</td>\n      <td>Sara</td>\n    </tr>\n    <tr>\n      <th>23</th>\n      <td>6</td>\n      <td>pay compensation</td>\n      <td>2011-01-16 11:47:00+01:00</td>\n      <td>200</td>\n      <td>Mike</td>\n    </tr>\n    <tr>\n      <th>24</th>\n      <td>5</td>\n      <td>register request</td>\n      <td>2011-01-06 09:02:00+01:00</td>\n      <td>50</td>\n      <td>Ellen</td>\n    </tr>\n    <tr>\n      <th>25</th>\n      <td>5</td>\n      <td>examine casually</td>\n      <td>2011-01-07 10:16:00+01:00</td>\n      <td>400</td>\n      <td>Mike</td>\n    </tr>\n    <tr>\n      <th>26</th>\n      <td>5</td>\n      <td>check ticket</td>\n      <td>2011-01-08 11:22:00+01:00</td>\n      <td>100</td>\n      <td>Pete</td>\n    </tr>\n    <tr>\n      <th>27</th>\n      <td>5</td>\n      <td>decide</td>\n      <td>2011-01-10 13:28:00+01:00</td>\n      <td>200</td>\n      <td>Sara</td>\n    </tr>\n    <tr>\n      <th>28</th>\n      <td>5</td>\n      <td>reinitiate request</td>\n      <td>2011-01-11 16:18:00+01:00</td>\n      <td>200</td>\n      <td>Sara</td>\n    </tr>\n    <tr>\n      <th>29</th>\n      <td>5</td>\n      <td>check ticket</td>\n      <td>2011-01-14 14:33:00+01:00</td>\n      <td>100</td>\n      <td>Ellen</td>\n    </tr>\n    <tr>\n      <th>30</th>\n      <td>5</td>\n      <td>examine casually</td>\n      <td>2011-01-16 15:50:00+01:00</td>\n      <td>400</td>\n      <td>Mike</td>\n    </tr>\n    <tr>\n      <th>31</th>\n      <td>5</td>\n      <td>decide</td>\n      <td>2011-01-19 11:18:00+01:00</td>\n      <td>200</td>\n      <td>Sara</td>\n    </tr>\n    <tr>\n      <th>32</th>\n      <td>5</td>\n      <td>reinitiate request</td>\n      <td>2011-01-20 12:48:00+01:00</td>\n      <td>200</td>\n      <td>Sara</td>\n    </tr>\n    <tr>\n      <th>33</th>\n      <td>5</td>\n      <td>examine casually</td>\n      <td>2011-01-21 09:06:00+01:00</td>\n      <td>400</td>\n      <td>Sue</td>\n    </tr>\n    <tr>\n      <th>34</th>\n      <td>5</td>\n      <td>check ticket</td>\n      <td>2011-01-21 11:34:00+01:00</td>\n      <td>100</td>\n      <td>Pete</td>\n    </tr>\n    <tr>\n      <th>35</th>\n      <td>5</td>\n      <td>decide</td>\n      <td>2011-01-23 13:12:00+01:00</td>\n      <td>200</td>\n      <td>Sara</td>\n    </tr>\n    <tr>\n      <th>36</th>\n      <td>5</td>\n      <td>reject request</td>\n      <td>2011-01-24 14:56:00+01:00</td>\n      <td>200</td>\n      <td>Mike</td>\n    </tr>\n    <tr>\n      <th>37</th>\n      <td>4</td>\n      <td>register request</td>\n      <td>2011-01-06 15:02:00+01:00</td>\n      <td>50</td>\n      <td>Pete</td>\n    </tr>\n    <tr>\n      <th>38</th>\n      <td>4</td>\n      <td>check ticket</td>\n      <td>2011-01-07 12:06:00+01:00</td>\n      <td>100</td>\n      <td>Mike</td>\n    </tr>\n    <tr>\n      <th>39</th>\n      <td>4</td>\n      <td>examine thoroughly</td>\n      <td>2011-01-08 14:43:00+01:00</td>\n      <td>400</td>\n      <td>Sean</td>\n    </tr>\n    <tr>\n      <th>40</th>\n      <td>4</td>\n      <td>decide</td>\n      <td>2011-01-09 12:02:00+01:00</td>\n      <td>200</td>\n      <td>Sara</td>\n    </tr>\n    <tr>\n      <th>41</th>\n      <td>4</td>\n      <td>reject request</td>\n      <td>2011-01-12 15:44:00+01:00</td>\n      <td>200</td>\n      <td>Ellen</td>\n    </tr>\n  </tbody>\n</table>\n</div>"
     },
     "execution_count": 1,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import pandas as pd\n",
    "\n",
    "df = pd.read_csv('data/running_example.csv', sep=';')\n",
    "df"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "notes"
    }
   },
   "source": [
    "Let's inspect the small event log.\n",
    "The first line (i.e., row) specifies the name of each column (i.e., event attribute).\n",
    "Observe that, in the data table described by the file, we have 5 columns, being: *case_id*, *activity*,\n",
    "*timestamp*, *costs* and *org:resource*.\n",
    "The first column represents the *case identifier*, i.e., allowing us to identify what activity has been logged in the\n",
    "context of what instance of the process.\n",
    "The second column (*activity*) records the activity that has been performed.\n",
    "The third column shows at what point in time the activity was recorded (*timestamp*).\n",
    "In this example data, additional information is present as well.\n",
    "In this case, the fourth column tracks the costs of the activity (*costs* attribute), whereas the fifth row tracks what\n",
    "resource has performed the activity (*org:resource*).\n",
    "\n",
    "Observe that, row 2-10 show the events that have been recorded for the process identified by *case identifier* 3.\n",
    "We observe that first a register request activity was performed, followed by the examine casually, check ticket, decide,\n",
    "reinitiate request, examine thoroughly, check ticket,decide, and finally, pay compensation activities.\n",
    "Note that, in this case, the recorded process instance behaves as described by the model depicted in Figure 3.\n",
    "\n",
    "Let's investigate some basic statistics of our log, e.g., the total number of cases described and the total number of events."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "pycharm": {
     "name": "#%%\n"
    },
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "6"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# number of cases\n",
    "len(df['case_id'].unique())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "pycharm": {
     "name": "#%%\n"
    },
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "42"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# number of events\n",
    "len(df)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "### Formatting Data Frames"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "notes"
    }
   },
   "source": [
    "Now we have loaded our first event log, it is time to put some pm4py into the mix.\n",
    "pm4py uses standardized column names to represent the *case identifier*, the *activity name* and the timstamp.\n",
    "These are, respectively, ```case:concept:name```, ```concept:name``` and ```time:timestamp```.\n",
    "Hence, to make pm4py work with the provided csv file, we need to rename the ```case_id```, ```activity``` and ```timestamp``` columns.\n",
    "pm4py provides a dedicated utility function for this:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "pycharm": {
     "name": "#%%\n"
    },
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>case:concept:name</th>\n",
       "      <th>concept:name</th>\n",
       "      <th>time:timestamp</th>\n",
       "      <th>costs</th>\n",
       "      <th>org:resource</th>\n",
       "      <th>@@index</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>14</th>\n",
       "      <td>1</td>\n",
       "      <td>register request</td>\n",
       "      <td>2010-12-30 10:02:00+00:00</td>\n",
       "      <td>50</td>\n",
       "      <td>Pete</td>\n",
       "      <td>14</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>15</th>\n",
       "      <td>1</td>\n",
       "      <td>examine thoroughly</td>\n",
       "      <td>2010-12-31 09:06:00+00:00</td>\n",
       "      <td>400</td>\n",
       "      <td>Sue</td>\n",
       "      <td>15</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>16</th>\n",
       "      <td>1</td>\n",
       "      <td>check ticket</td>\n",
       "      <td>2011-01-05 14:12:00+00:00</td>\n",
       "      <td>100</td>\n",
       "      <td>Mike</td>\n",
       "      <td>16</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>17</th>\n",
       "      <td>1</td>\n",
       "      <td>decide</td>\n",
       "      <td>2011-01-06 10:18:00+00:00</td>\n",
       "      <td>200</td>\n",
       "      <td>Sara</td>\n",
       "      <td>17</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>18</th>\n",
       "      <td>1</td>\n",
       "      <td>reject request</td>\n",
       "      <td>2011-01-07 13:24:00+00:00</td>\n",
       "      <td>200</td>\n",
       "      <td>Pete</td>\n",
       "      <td>18</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9</th>\n",
       "      <td>2</td>\n",
       "      <td>register request</td>\n",
       "      <td>2010-12-30 10:32:00+00:00</td>\n",
       "      <td>50</td>\n",
       "      <td>Mike</td>\n",
       "      <td>9</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>10</th>\n",
       "      <td>2</td>\n",
       "      <td>check ticket</td>\n",
       "      <td>2010-12-30 11:12:00+00:00</td>\n",
       "      <td>100</td>\n",
       "      <td>Mike</td>\n",
       "      <td>10</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>11</th>\n",
       "      <td>2</td>\n",
       "      <td>examine casually</td>\n",
       "      <td>2010-12-30 13:16:00+00:00</td>\n",
       "      <td>400</td>\n",
       "      <td>Sean</td>\n",
       "      <td>11</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>12</th>\n",
       "      <td>2</td>\n",
       "      <td>decide</td>\n",
       "      <td>2011-01-05 10:22:00+00:00</td>\n",
       "      <td>200</td>\n",
       "      <td>Sara</td>\n",
       "      <td>12</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>13</th>\n",
       "      <td>2</td>\n",
       "      <td>pay compensation</td>\n",
       "      <td>2011-01-08 11:05:00+00:00</td>\n",
       "      <td>200</td>\n",
       "      <td>Ellen</td>\n",
       "      <td>13</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>3</td>\n",
       "      <td>register request</td>\n",
       "      <td>2010-12-30 13:32:00+00:00</td>\n",
       "      <td>50</td>\n",
       "      <td>Pete</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>3</td>\n",
       "      <td>examine casually</td>\n",
       "      <td>2010-12-30 14:06:00+00:00</td>\n",
       "      <td>400</td>\n",
       "      <td>Mike</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>3</td>\n",
       "      <td>check ticket</td>\n",
       "      <td>2010-12-30 15:34:00+00:00</td>\n",
       "      <td>100</td>\n",
       "      <td>Ellen</td>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>3</td>\n",
       "      <td>decide</td>\n",
       "      <td>2011-01-06 08:18:00+00:00</td>\n",
       "      <td>200</td>\n",
       "      <td>Sara</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>3</td>\n",
       "      <td>reinitiate request</td>\n",
       "      <td>2011-01-06 11:18:00+00:00</td>\n",
       "      <td>200</td>\n",
       "      <td>Sara</td>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>3</td>\n",
       "      <td>examine thoroughly</td>\n",
       "      <td>2011-01-06 12:06:00+00:00</td>\n",
       "      <td>400</td>\n",
       "      <td>Sean</td>\n",
       "      <td>5</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>3</td>\n",
       "      <td>check ticket</td>\n",
       "      <td>2011-01-08 10:43:00+00:00</td>\n",
       "      <td>100</td>\n",
       "      <td>Pete</td>\n",
       "      <td>6</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>3</td>\n",
       "      <td>decide</td>\n",
       "      <td>2011-01-09 08:55:00+00:00</td>\n",
       "      <td>200</td>\n",
       "      <td>Sara</td>\n",
       "      <td>7</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8</th>\n",
       "      <td>3</td>\n",
       "      <td>pay compensation</td>\n",
       "      <td>2011-01-15 09:45:00+00:00</td>\n",
       "      <td>200</td>\n",
       "      <td>Ellen</td>\n",
       "      <td>8</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>37</th>\n",
       "      <td>4</td>\n",
       "      <td>register request</td>\n",
       "      <td>2011-01-06 14:02:00+00:00</td>\n",
       "      <td>50</td>\n",
       "      <td>Pete</td>\n",
       "      <td>37</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>38</th>\n",
       "      <td>4</td>\n",
       "      <td>check ticket</td>\n",
       "      <td>2011-01-07 11:06:00+00:00</td>\n",
       "      <td>100</td>\n",
       "      <td>Mike</td>\n",
       "      <td>38</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>39</th>\n",
       "      <td>4</td>\n",
       "      <td>examine thoroughly</td>\n",
       "      <td>2011-01-08 13:43:00+00:00</td>\n",
       "      <td>400</td>\n",
       "      <td>Sean</td>\n",
       "      <td>39</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>40</th>\n",
       "      <td>4</td>\n",
       "      <td>decide</td>\n",
       "      <td>2011-01-09 11:02:00+00:00</td>\n",
       "      <td>200</td>\n",
       "      <td>Sara</td>\n",
       "      <td>40</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>41</th>\n",
       "      <td>4</td>\n",
       "      <td>reject request</td>\n",
       "      <td>2011-01-12 14:44:00+00:00</td>\n",
       "      <td>200</td>\n",
       "      <td>Ellen</td>\n",
       "      <td>41</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>24</th>\n",
       "      <td>5</td>\n",
       "      <td>register request</td>\n",
       "      <td>2011-01-06 08:02:00+00:00</td>\n",
       "      <td>50</td>\n",
       "      <td>Ellen</td>\n",
       "      <td>24</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>25</th>\n",
       "      <td>5</td>\n",
       "      <td>examine casually</td>\n",
       "      <td>2011-01-07 09:16:00+00:00</td>\n",
       "      <td>400</td>\n",
       "      <td>Mike</td>\n",
       "      <td>25</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>26</th>\n",
       "      <td>5</td>\n",
       "      <td>check ticket</td>\n",
       "      <td>2011-01-08 10:22:00+00:00</td>\n",
       "      <td>100</td>\n",
       "      <td>Pete</td>\n",
       "      <td>26</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>27</th>\n",
       "      <td>5</td>\n",
       "      <td>decide</td>\n",
       "      <td>2011-01-10 12:28:00+00:00</td>\n",
       "      <td>200</td>\n",
       "      <td>Sara</td>\n",
       "      <td>27</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>28</th>\n",
       "      <td>5</td>\n",
       "      <td>reinitiate request</td>\n",
       "      <td>2011-01-11 15:18:00+00:00</td>\n",
       "      <td>200</td>\n",
       "      <td>Sara</td>\n",
       "      <td>28</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>29</th>\n",
       "      <td>5</td>\n",
       "      <td>check ticket</td>\n",
       "      <td>2011-01-14 13:33:00+00:00</td>\n",
       "      <td>100</td>\n",
       "      <td>Ellen</td>\n",
       "      <td>29</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>30</th>\n",
       "      <td>5</td>\n",
       "      <td>examine casually</td>\n",
       "      <td>2011-01-16 14:50:00+00:00</td>\n",
       "      <td>400</td>\n",
       "      <td>Mike</td>\n",
       "      <td>30</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>31</th>\n",
       "      <td>5</td>\n",
       "      <td>decide</td>\n",
       "      <td>2011-01-19 10:18:00+00:00</td>\n",
       "      <td>200</td>\n",
       "      <td>Sara</td>\n",
       "      <td>31</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>32</th>\n",
       "      <td>5</td>\n",
       "      <td>reinitiate request</td>\n",
       "      <td>2011-01-20 11:48:00+00:00</td>\n",
       "      <td>200</td>\n",
       "      <td>Sara</td>\n",
       "      <td>32</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>33</th>\n",
       "      <td>5</td>\n",
       "      <td>examine casually</td>\n",
       "      <td>2011-01-21 08:06:00+00:00</td>\n",
       "      <td>400</td>\n",
       "      <td>Sue</td>\n",
       "      <td>33</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>34</th>\n",
       "      <td>5</td>\n",
       "      <td>check ticket</td>\n",
       "      <td>2011-01-21 10:34:00+00:00</td>\n",
       "      <td>100</td>\n",
       "      <td>Pete</td>\n",
       "      <td>34</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>35</th>\n",
       "      <td>5</td>\n",
       "      <td>decide</td>\n",
       "      <td>2011-01-23 12:12:00+00:00</td>\n",
       "      <td>200</td>\n",
       "      <td>Sara</td>\n",
       "      <td>35</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>36</th>\n",
       "      <td>5</td>\n",
       "      <td>reject request</td>\n",
       "      <td>2011-01-24 13:56:00+00:00</td>\n",
       "      <td>200</td>\n",
       "      <td>Mike</td>\n",
       "      <td>36</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>19</th>\n",
       "      <td>6</td>\n",
       "      <td>register request</td>\n",
       "      <td>2011-01-06 14:02:00+00:00</td>\n",
       "      <td>50</td>\n",
       "      <td>Mike</td>\n",
       "      <td>19</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>20</th>\n",
       "      <td>6</td>\n",
       "      <td>examine casually</td>\n",
       "      <td>2011-01-06 15:06:00+00:00</td>\n",
       "      <td>400</td>\n",
       "      <td>Ellen</td>\n",
       "      <td>20</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>21</th>\n",
       "      <td>6</td>\n",
       "      <td>check ticket</td>\n",
       "      <td>2011-01-07 15:22:00+00:00</td>\n",
       "      <td>100</td>\n",
       "      <td>Mike</td>\n",
       "      <td>21</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>22</th>\n",
       "      <td>6</td>\n",
       "      <td>decide</td>\n",
       "      <td>2011-01-07 15:52:00+00:00</td>\n",
       "      <td>200</td>\n",
       "      <td>Sara</td>\n",
       "      <td>22</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>23</th>\n",
       "      <td>6</td>\n",
       "      <td>pay compensation</td>\n",
       "      <td>2011-01-16 10:47:00+00:00</td>\n",
       "      <td>200</td>\n",
       "      <td>Mike</td>\n",
       "      <td>23</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   case:concept:name        concept:name            time:timestamp  costs  \\\n",
       "14                 1    register request 2010-12-30 10:02:00+00:00     50   \n",
       "15                 1  examine thoroughly 2010-12-31 09:06:00+00:00    400   \n",
       "16                 1        check ticket 2011-01-05 14:12:00+00:00    100   \n",
       "17                 1              decide 2011-01-06 10:18:00+00:00    200   \n",
       "18                 1      reject request 2011-01-07 13:24:00+00:00    200   \n",
       "9                  2    register request 2010-12-30 10:32:00+00:00     50   \n",
       "10                 2        check ticket 2010-12-30 11:12:00+00:00    100   \n",
       "11                 2    examine casually 2010-12-30 13:16:00+00:00    400   \n",
       "12                 2              decide 2011-01-05 10:22:00+00:00    200   \n",
       "13                 2    pay compensation 2011-01-08 11:05:00+00:00    200   \n",
       "0                  3    register request 2010-12-30 13:32:00+00:00     50   \n",
       "1                  3    examine casually 2010-12-30 14:06:00+00:00    400   \n",
       "2                  3        check ticket 2010-12-30 15:34:00+00:00    100   \n",
       "3                  3              decide 2011-01-06 08:18:00+00:00    200   \n",
       "4                  3  reinitiate request 2011-01-06 11:18:00+00:00    200   \n",
       "5                  3  examine thoroughly 2011-01-06 12:06:00+00:00    400   \n",
       "6                  3        check ticket 2011-01-08 10:43:00+00:00    100   \n",
       "7                  3              decide 2011-01-09 08:55:00+00:00    200   \n",
       "8                  3    pay compensation 2011-01-15 09:45:00+00:00    200   \n",
       "37                 4    register request 2011-01-06 14:02:00+00:00     50   \n",
       "38                 4        check ticket 2011-01-07 11:06:00+00:00    100   \n",
       "39                 4  examine thoroughly 2011-01-08 13:43:00+00:00    400   \n",
       "40                 4              decide 2011-01-09 11:02:00+00:00    200   \n",
       "41                 4      reject request 2011-01-12 14:44:00+00:00    200   \n",
       "24                 5    register request 2011-01-06 08:02:00+00:00     50   \n",
       "25                 5    examine casually 2011-01-07 09:16:00+00:00    400   \n",
       "26                 5        check ticket 2011-01-08 10:22:00+00:00    100   \n",
       "27                 5              decide 2011-01-10 12:28:00+00:00    200   \n",
       "28                 5  reinitiate request 2011-01-11 15:18:00+00:00    200   \n",
       "29                 5        check ticket 2011-01-14 13:33:00+00:00    100   \n",
       "30                 5    examine casually 2011-01-16 14:50:00+00:00    400   \n",
       "31                 5              decide 2011-01-19 10:18:00+00:00    200   \n",
       "32                 5  reinitiate request 2011-01-20 11:48:00+00:00    200   \n",
       "33                 5    examine casually 2011-01-21 08:06:00+00:00    400   \n",
       "34                 5        check ticket 2011-01-21 10:34:00+00:00    100   \n",
       "35                 5              decide 2011-01-23 12:12:00+00:00    200   \n",
       "36                 5      reject request 2011-01-24 13:56:00+00:00    200   \n",
       "19                 6    register request 2011-01-06 14:02:00+00:00     50   \n",
       "20                 6    examine casually 2011-01-06 15:06:00+00:00    400   \n",
       "21                 6        check ticket 2011-01-07 15:22:00+00:00    100   \n",
       "22                 6              decide 2011-01-07 15:52:00+00:00    200   \n",
       "23                 6    pay compensation 2011-01-16 10:47:00+00:00    200   \n",
       "\n",
       "   org:resource  @@index  \n",
       "14         Pete       14  \n",
       "15          Sue       15  \n",
       "16         Mike       16  \n",
       "17         Sara       17  \n",
       "18         Pete       18  \n",
       "9          Mike        9  \n",
       "10         Mike       10  \n",
       "11         Sean       11  \n",
       "12         Sara       12  \n",
       "13        Ellen       13  \n",
       "0          Pete        0  \n",
       "1          Mike        1  \n",
       "2         Ellen        2  \n",
       "3          Sara        3  \n",
       "4          Sara        4  \n",
       "5          Sean        5  \n",
       "6          Pete        6  \n",
       "7          Sara        7  \n",
       "8         Ellen        8  \n",
       "37         Pete       37  \n",
       "38         Mike       38  \n",
       "39         Sean       39  \n",
       "40         Sara       40  \n",
       "41        Ellen       41  \n",
       "24        Ellen       24  \n",
       "25         Mike       25  \n",
       "26         Pete       26  \n",
       "27         Sara       27  \n",
       "28         Sara       28  \n",
       "29        Ellen       29  \n",
       "30         Mike       30  \n",
       "31         Sara       31  \n",
       "32         Sara       32  \n",
       "33          Sue       33  \n",
       "34         Pete       34  \n",
       "35         Sara       35  \n",
       "36         Mike       36  \n",
       "19         Mike       19  \n",
       "20        Ellen       20  \n",
       "21         Mike       21  \n",
       "22         Sara       22  \n",
       "23         Mike       23  "
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import pm4py\n",
    "log = pm4py.format_dataframe(df, case_id='case_id',activity_key='activity',\n",
    "                             timestamp_key='timestamp')\n",
    "log\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "pycharm": {
     "name": "#%% md\n"
    },
    "slideshow": {
     "slide_type": "notes"
    }
   },
   "source": [
    "Observe that the column names are updated as expected.\n",
    "\n",
    "Let us assume that we are not only interested in the number of events and cases, yet, we also want to figure out what\n",
    "activities occur first, and what activities occur last in the traces described by the event log.\n",
    "pm4py has a specific built-in function for this, i.e., ```pm4py.get_start_activities()``` and ```pm4py.get_end_activities()``` respectively."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "pycharm": {
     "name": "#%%\n"
    },
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'register request': 6}"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pm4py.get_start_activities(log)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "pycharm": {
     "name": "#%%\n"
    },
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'pay compensation': 3, 'reject request': 3}"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pm4py.get_end_activities(log)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "notes"
    }
   },
   "source": [
    "The ```pm4py.get_start_activities()``` and ```pm4py.get_end_activities()``` both return a dictionary containing the activities\n",
    "as a key, and, the number of observations (i.e., number of traces in which they occur first, respectively, last) in\n",
    "the event log.\n",
    "\n",
    "pm4py exploits a built-in pandas function to detect the format of the timestamps in the input data automatically.\n",
    "However, pandas looks at the timestamp values in each row in isolation.\n",
    "In some cases, this can lead to problems.\n",
    "For example, if the provided value is 2020-01-18, i.e., first the year, then the month, and then the day of the date,\n",
    "in some cases, a value of 2020-02-01 may be interpreted wrongly as January 2nd, i.e., rather than February 1st.\n",
    "To alleviate this problem, an additional parameter can be provided to the ```format_dataframe()``` method, i.e.,\n",
    "the timest_format parameter. The default Python timestamp format codes can be used to provide the timestamp format.\n",
    "In this example, the timestamp format is ```%Y-%m-%d %H:%M:%S%z```.\n",
    "In general, we advise to always specify the timestamp format."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "pycharm": {
     "name": "#%% md\n"
    },
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "## Importing XES Files"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "notes"
    }
   },
   "source": [
    "Next to CSV files, event data can also be stored in an XML-based format, i.e., in XES files.\n",
    "In an XES file, we can describe a containment relation, i.e., a log contains a number of traces, which in turn contain several events.\n",
    "Furthermore, an object, i.e., a log, trace, or event, is allowed to have attributes.\n",
    "The advantage is that certain data attributes that are constant for a log or a trace, can be stored at that level.\n",
    "For example, assume that we only know the total costs of a case, rather than the costs of the individual events.\n",
    "If we want to store this information in a CSV file, we either need to replicate this information (i.e., we can only\n",
    "store data in rows, which directly refer to events), or, we need to explicitly define that certain columns only get a\n",
    "value once, i.e., referring to case-level attributes.\n",
    "The XES standard more naturally supports the storage of this type of information.\n",
    "Click [here](data/running_example.xes) to obtain the .xes file of the running_example.\n",
    "\n",
    "Importing an XES file is fairly straightforward.\n",
    "pm4py has a special read_xes()-function that can parse a given xes file and load it in pm4py, i.e., as an Event Log object.\n",
    "Consider the following code snippet, in which we show how to import an XES event log.\n",
    "Like the previous example, the script outputs activities that can start and end a trace."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "pycharm": {
     "name": "#%%\n"
    },
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "a356969d9a9b4ffa928c5670f630d3fc",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "parsing log, completed traces ::   0%|          | 0/6 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "{'register request': 6}"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "log_xes = pm4py.read_xes('data/running_example.xes', return_legacy_log_object=True)\n",
    "pm4py.get_start_activities(log_xes)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "pycharm": {
     "name": "#%%\n"
    },
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'pay compensation': 3, 'reject request': 3}"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pm4py.get_end_activities(log_xes)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "## Exporting Event Data"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "notes"
    }
   },
   "source": [
    "Now we have seen how to import event data into pm4py, let’s take a look at the opposite, i.e., exporting event data.\n",
    "Exporting of event logs can be very useful, e.g., we might want to convert a .csv file into a ```.xes``` file or we might\n",
    "want to filter out certain (noisy) cases and save the filtered event log. Like importing, exporting of event data is\n",
    "possible in two ways, i.e., exporting to ```csv``` (using ```pandas```) and exporting event logs to xes. In the upcoming\n",
    "sections, we show how to export an event log stored as a ```pandas data frame``` into a ```csv``` file, a ```pandas data frame``` as an\n",
    "```xes file```, a pm4py ```event log object``` as a ```csv file``` and finally, a pm4py ```event log object``` as an ```xes file```."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "### Storing a Pandas Data Frame as a csv file"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "notes"
    }
   },
   "source": [
    "Storing an event log that is represented as a pandas dataframe is straightforward, i.e., we can directly use the ```to_csv```\n",
    " ([full reference here](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html)) function\n",
    " of the pandas DataFrame object. Consider the following example snippet of code, in which we show this functionality."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {
    "pycharm": {
     "name": "#%%\n"
    },
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "outputs": [],
   "source": [
    "log.to_csv('running_example_exported.csv')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "### Storing a Pandas DataFrame as a .xes file"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "notes"
    }
   },
   "source": [
    "It is also possible to store a pandas data frame to a xes file. This is simply done by calling the ```pm4py.write_xes()```\n",
    "function. You can pass the dataframe as an input parameter to the function, i.e., pm4py handles the internal conversion\n",
    "of the dataframe to an event log object prior to writing it to disk. Note that this construct only works if you have\n",
    "formatted the data frame, i.e., as highlighted earlier in the importing CSV section."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "pycharm": {
     "is_executing": true,
     "name": "#%%\n"
    },
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "outputs": [],
   "source": [
    "pm4py.write_xes(log, 'running_example_csv_exported_as_xes.xes')\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "### Storing an Event Log object as a .csv file"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "pycharm": {
     "name": "#%% md\n"
    },
    "slideshow": {
     "slide_type": "notes"
    }
   },
   "source": [
    "In some cases, we might want to store an event log object, e.g., obtained by importing a .xes file, as a csv file.\n",
    "For example, certain (commercial) process mining tools only support csv importing. \n",
    "For this purpose, pm4py offers conversion functionality that allows you to convert your event log object into a data frame,\n",
    "which you can subsequently export using pandas.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {
    "pycharm": {
     "name": "#%%\n"
    },
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "outputs": [],
   "source": [
    "df = pm4py.convert_to_dataframe(log_xes)\n",
    "df.to_csv('running_example_xes_exported_as_csv.csv')\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "pycharm": {
     "name": "#%% md\n"
    },
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "### Storing an Event Log Object as a .xes File"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "pycharm": {
     "name": "#%% md\n"
    },
    "slideshow": {
     "slide_type": "notes"
    }
   },
   "source": [
    "Storing an event log object as a .xes file is rather straightforward. In pm4py, the write_xes() method allows us to do so.\n",
    "Consider the simple example script below in which we show an example of this functionality."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "pycharm": {
     "name": "#%%\n"
    },
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "outputs": [],
   "source": [
    "pm4py.write_xes(log_xes, 'running_example_exported.xes')"
   ]
  }
 ],
 "metadata": {
  "celltoolbar": "Slideshow",
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}