Spaces:
Sleeping
Sleeping
File size: 3,723 Bytes
8097001 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
import os
import unittest
from pm4py.objects.conversion.log import converter as log_conversion
from pm4py.objects.log.util import dataframe_utils
from pm4py.objects.log.exporter.xes import exporter as xes_exporter
from pm4py.objects.log.importer.xes import importer as xes_importer
from pm4py.objects.log.util import sampling, sorting, index_attribute
from pm4py.util import constants, pandas_utils
from tests.constants import INPUT_DATA_DIR, OUTPUT_DATA_DIR
class CsvImportExportTest(unittest.TestCase):
def test_importExportCSVtoXES(self):
# to avoid static method warnings in tests,
# that by construction of the unittest package have to be expressed in such way
self.dummy_variable = "dummy_value"
df = pandas_utils.read_csv(os.path.join(INPUT_DATA_DIR, "running-example.csv"))
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
event_log = log_conversion.apply(df, variant=log_conversion.TO_EVENT_STREAM)
event_log = sorting.sort_timestamp(event_log)
event_log = sampling.sample(event_log)
event_log = index_attribute.insert_event_index_as_event_attribute(event_log)
log = log_conversion.apply(event_log, variant=log_conversion.Variants.TO_EVENT_LOG)
log = sorting.sort_timestamp(log)
log = sampling.sample(log)
log = index_attribute.insert_trace_index_as_event_attribute(log)
xes_exporter.apply(log, os.path.join(OUTPUT_DATA_DIR, "running-example-exported.xes"))
log_imported_after_export = xes_importer.apply(
os.path.join(OUTPUT_DATA_DIR, "running-example-exported.xes"))
self.assertEqual(len(log), len(log_imported_after_export))
os.remove(os.path.join(OUTPUT_DATA_DIR, "running-example-exported.xes"))
def test_importExportCSVtoCSV(self):
# to avoid static method warnings in tests,
# that by construction of the unittest package have to be expressed in such way
self.dummy_variable = "dummy_value"
df = pandas_utils.read_csv(os.path.join(INPUT_DATA_DIR, "running-example.csv"))
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
event_log = log_conversion.apply(df, variant=log_conversion.TO_EVENT_STREAM)
event_log = sorting.sort_timestamp(event_log)
event_log = sampling.sample(event_log)
event_log = index_attribute.insert_event_index_as_event_attribute(event_log)
log = log_conversion.apply(event_log, variant=log_conversion.Variants.TO_EVENT_LOG)
log = sorting.sort_timestamp(log)
log = sampling.sample(log)
log = index_attribute.insert_trace_index_as_event_attribute(log)
event_log_transformed = log_conversion.apply(log, variant=log_conversion.TO_EVENT_STREAM)
df = log_conversion.apply(event_log_transformed, variant=log_conversion.TO_DATA_FRAME)
df.to_csv(os.path.join(OUTPUT_DATA_DIR, "running-example-exported.csv"))
df = pandas_utils.read_csv(os.path.join(OUTPUT_DATA_DIR, "running-example-exported.csv"))
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
event_log_imported_after_export = log_conversion.apply(df, variant=log_conversion.TO_EVENT_STREAM)
log_imported_after_export = log_conversion.apply(
event_log_imported_after_export, variant=log_conversion.Variants.TO_EVENT_LOG)
self.assertEqual(len(log), len(log_imported_after_export))
os.remove(os.path.join(OUTPUT_DATA_DIR, "running-example-exported.csv"))
if __name__ == "__main__":
unittest.main()
|