Spaces:
Sleeping
Sleeping
File size: 57,204 Bytes
8097001 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 |
from pm4py.objects.log.util import dataframe_utils
import unittest
import importlib.util
import os
from pm4py.util import constants, pandas_utils
from pm4py.objects.conversion.process_tree import converter as process_tree_converter
class DocTests(unittest.TestCase):
def load_running_example_xes(self):
from pm4py.objects.log.importer.xes import importer
log = importer.apply(os.path.join("input_data", "running-example.xes"))
return log
def load_running_example_df(self):
df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv"))
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
return df
def load_running_example_stream(self):
from pm4py.objects.conversion.log import converter
df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv"))
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
stream = converter.apply(df, variant=converter.TO_EVENT_STREAM)
return stream
def load_running_example_pnml(self):
from pm4py.objects.petri_net.importer import importer
net, im, fm = importer.apply(os.path.join("input_data", "running-example.pnml"))
return net, im, fm
def load_receipt_xes(self):
from pm4py.objects.log.importer.xes import importer
log = importer.apply(os.path.join("input_data", "receipt.xes"))
return log
def load_receipt_df(self):
df = pandas_utils.read_csv(os.path.join("input_data", "receipt.csv"))
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
return df
def load_receipt_stream(self):
from pm4py.objects.conversion.log import converter
df = pandas_utils.read_csv(os.path.join("input_data", "receipt.csv"))
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
stream = converter.apply(df, variant=converter.TO_EVENT_STREAM)
return stream
def load_roadtraffic50_xes(self):
from pm4py.objects.log.importer.xes import importer
log = importer.apply(os.path.join("input_data", "roadtraffic50traces.xes"))
return log
def load_roadtraffic100_xes(self):
from pm4py.objects.log.importer.xes import importer
log = importer.apply(os.path.join("input_data", "roadtraffic100traces.xes"))
return log
def load_roadtraffic100_csv(self):
from pm4py.objects.log.importer.xes import importer
log = importer.apply(os.path.join("input_data", "roadtraffic100traces.csv"))
return log
def test_1(self):
from pm4py.objects.log.importer.xes import importer as xes_importer
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
def test_2(self):
from pm4py.objects.log.importer.xes import importer as xes_importer
variant = xes_importer.Variants.ITERPARSE
parameters = {variant.value.Parameters.TIMESTAMP_SORT: True}
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"),
variant=variant, parameters=parameters)
def test_3(self):
from pm4py.objects.conversion.log import converter as log_converter
log_csv = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv"), sep=',')
event_log = log_converter.apply(log_csv, variant=log_converter.Variants.TO_EVENT_LOG)
def test_4(self):
from pm4py.objects.conversion.log import converter as log_converter
log_csv = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv"), sep=',')
log_csv = log_csv.rename(columns={'case:concept:name': 'case'})
parameters = {log_converter.Variants.TO_EVENT_LOG.value.Parameters.CASE_ID_KEY: 'case'}
event_log = log_converter.apply(log_csv, parameters=parameters, variant=log_converter.Variants.TO_EVENT_LOG)
def test_5(self):
log = self.load_running_example_xes()
from pm4py.objects.log.exporter.xes import exporter as xes_exporter
path = os.path.join("test_output_data", "ru.xes")
xes_exporter.apply(log, path)
os.remove(path)
def test_6(self):
log = self.load_running_example_xes()
from pm4py.objects.conversion.log import converter as log_converter
dataframe = log_converter.apply(log, variant=log_converter.Variants.TO_DATA_FRAME)
dataframe.to_csv("ru.csv")
os.remove("ru.csv")
def test_8(self):
from pm4py.algo.filtering.log.timestamp import timestamp_filter
log = self.load_running_example_xes()
filtered_log = timestamp_filter.filter_traces_contained(log, "2011-03-09 00:00:00", "2012-01-18 23:59:59")
def test_9(self):
from pm4py.algo.filtering.pandas.timestamp import timestamp_filter
dataframe = self.load_running_example_df()
df_timest_intersecting = timestamp_filter.filter_traces_intersecting(dataframe, "2011-03-09 00:00:00",
"2012-01-18 23:59:59", parameters={
timestamp_filter.Parameters.CASE_ID_KEY: "case:concept:name",
timestamp_filter.Parameters.TIMESTAMP_KEY: "time:timestamp"})
def test_10(self):
from pm4py.algo.filtering.log.timestamp import timestamp_filter
log = self.load_running_example_xes()
filtered_log = timestamp_filter.filter_traces_intersecting(log, "2011-03-09 00:00:00", "2012-01-18 23:59:59")
def test_11(self):
from pm4py.algo.filtering.pandas.timestamp import timestamp_filter
dataframe = self.load_running_example_df()
df_timest_intersecting = timestamp_filter.filter_traces_intersecting(dataframe, "2011-03-09 00:00:00",
"2012-01-18 23:59:59", parameters={
timestamp_filter.Parameters.CASE_ID_KEY: "case:concept:name",
timestamp_filter.Parameters.TIMESTAMP_KEY: "time:timestamp"})
def test_12(self):
from pm4py.algo.filtering.log.timestamp import timestamp_filter
log = self.load_running_example_xes()
filtered_log_events = timestamp_filter.apply_events(log, "2011-03-09 00:00:00", "2012-01-18 23:59:59")
def test_13(self):
from pm4py.algo.filtering.pandas.timestamp import timestamp_filter
dataframe = self.load_running_example_df()
df_timest_events = timestamp_filter.apply_events(dataframe, "2011-03-09 00:00:00", "2012-01-18 23:59:59",
parameters={
timestamp_filter.Parameters.CASE_ID_KEY: "case:concept:name",
timestamp_filter.Parameters.TIMESTAMP_KEY: "time:timestamp"})
def test_14(self):
from pm4py.algo.filtering.log.cases import case_filter
log = self.load_running_example_xes()
filtered_log = case_filter.filter_case_performance(log, 86400, 864000)
def test_15(self):
from pm4py.algo.filtering.pandas.cases import case_filter
dataframe = self.load_running_example_df()
df_cases = case_filter.filter_case_performance(dataframe, min_case_performance=86400,
max_case_performance=864000, parameters={
case_filter.Parameters.CASE_ID_KEY: "case:concept:name",
case_filter.Parameters.TIMESTAMP_KEY: "time:timestamp"})
def test_22(self):
from pm4py.algo.filtering.log.variants import variants_filter
log = self.load_running_example_xes()
variants = variants_filter.get_variants(log)
def test_23(self):
from pm4py.statistics.traces.generic.pandas import case_statistics
df = self.load_running_example_df()
variants = case_statistics.get_variants_df(df,
parameters={
case_statistics.Parameters.CASE_ID_KEY: "case:concept:name",
case_statistics.Parameters.ACTIVITY_KEY: "concept:name"})
def test_24(self):
from pm4py.statistics.traces.generic.log import case_statistics
log = self.load_running_example_xes()
variants_count = case_statistics.get_variant_statistics(log)
variants_count = sorted(variants_count, key=lambda x: x['count'], reverse=True)
def test_25(self):
from pm4py.statistics.traces.generic.pandas import case_statistics
df = self.load_running_example_df()
variants_count = case_statistics.get_variant_statistics(df,
parameters={
case_statistics.Parameters.CASE_ID_KEY: "case:concept:name",
case_statistics.Parameters.ACTIVITY_KEY: "concept:name",
case_statistics.Parameters.TIMESTAMP_KEY: "time:timestamp"})
variants_count = sorted(variants_count, key=lambda x: x['case:concept:name'], reverse=True)
def test_26(self):
from pm4py.algo.filtering.log.variants import variants_filter
log = self.load_running_example_xes()
variants = ["register request,examine thoroughly,check ticket,decide,reject request"]
filtered_log1 = variants_filter.apply(log, variants)
def test_27(self):
from pm4py.algo.filtering.pandas.variants import variants_filter
df = self.load_running_example_df()
variants = ["register request,examine thoroughly,check ticket,decide,reject request"]
filtered_df1 = variants_filter.apply(df, variants,
parameters={variants_filter.Parameters.CASE_ID_KEY: "case:concept:name",
variants_filter.Parameters.ACTIVITY_KEY: "concept:name"})
def test_28(self):
from pm4py.algo.filtering.log.variants import variants_filter
log = self.load_running_example_xes()
variants = ["register request,examine thoroughly,check ticket,decide,reject request"]
filtered_log2 = variants_filter.apply(log, variants, parameters={variants_filter.Parameters.POSITIVE: False})
def test_29(self):
from pm4py.algo.filtering.pandas.variants import variants_filter
df = self.load_running_example_df()
variants = ["register request,examine thoroughly,check ticket,decide,reject request"]
filtered_df2 = variants_filter.apply(df, variants,
parameters={variants_filter.Parameters.POSITIVE: False,
variants_filter.Parameters.CASE_ID_KEY: "case:concept:name",
variants_filter.Parameters.ACTIVITY_KEY: "concept:name"})
def test_32(self):
from pm4py.algo.filtering.log.attributes import attributes_filter
log = self.load_running_example_xes()
activities = attributes_filter.get_attribute_values(log, "concept:name")
resources = attributes_filter.get_attribute_values(log, "org:resource")
def test_33(self):
from pm4py.algo.filtering.pandas.attributes import attributes_filter
df = self.load_running_example_df()
activities = attributes_filter.get_attribute_values(df, attribute_key="concept:name")
resources = attributes_filter.get_attribute_values(df, attribute_key="org:resource")
def test_34(self):
from pm4py.algo.filtering.log.attributes import attributes_filter
log = self.load_receipt_xes()
tracefilter_log_pos = attributes_filter.apply(log, ["Resource10"],
parameters={
attributes_filter.Parameters.ATTRIBUTE_KEY: "org:resource",
attributes_filter.Parameters.POSITIVE: True})
tracefilter_log_neg = attributes_filter.apply(log, ["Resource10"],
parameters={
attributes_filter.Parameters.ATTRIBUTE_KEY: "org:resource",
attributes_filter.Parameters.POSITIVE: False})
def test_35(self):
from pm4py.algo.filtering.pandas.attributes import attributes_filter
df = self.load_receipt_df()
df_traces_pos = attributes_filter.apply(df, ["Resource10"],
parameters={
attributes_filter.Parameters.CASE_ID_KEY: "case:concept:name",
attributes_filter.Parameters.ATTRIBUTE_KEY: "org:resource",
attributes_filter.Parameters.POSITIVE: True})
df_traces_neg = attributes_filter.apply(df, ["Resource10"],
parameters={
attributes_filter.Parameters.CASE_ID_KEY: "case:concept:name",
attributes_filter.Parameters.ATTRIBUTE_KEY: "org:resource",
attributes_filter.Parameters.POSITIVE: False})
def test_38(self):
import os
from pm4py.objects.log.importer.xes import importer as xes_importer
log = xes_importer.apply(os.path.join("input_data", "roadtraffic100traces.xes"))
from pm4py.algo.filtering.log.attributes import attributes_filter
filtered_log_events = attributes_filter.apply_numeric_events(log, 34, 36,
parameters={
attributes_filter.Parameters.ATTRIBUTE_KEY: "amount"})
filtered_log_cases = attributes_filter.apply_numeric(log, 34, 36,
parameters={
attributes_filter.Parameters.ATTRIBUTE_KEY: "amount"})
filtered_log_cases = attributes_filter.apply_numeric(log, 34, 500,
parameters={
attributes_filter.Parameters.ATTRIBUTE_KEY: "amount",
attributes_filter.Parameters.STREAM_FILTER_KEY1: "concept:name",
attributes_filter.Parameters.STREAM_FILTER_VALUE1: "Add penalty"})
def test_39(self):
import os
df = pandas_utils.read_csv(os.path.join("input_data", "roadtraffic100traces.csv"))
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
from pm4py.algo.filtering.pandas.attributes import attributes_filter
filtered_df_events = attributes_filter.apply_numeric_events(df, 34, 36,
parameters={
attributes_filter.Parameters.CASE_ID_KEY: "case:concept:name",
attributes_filter.Parameters.ATTRIBUTE_KEY: "amount"})
filtered_df_cases = attributes_filter.apply_numeric(df, 34, 36,
parameters={
attributes_filter.Parameters.CASE_ID_KEY: "case:concept:name",
attributes_filter.Parameters.ATTRIBUTE_KEY: "amount"})
filtered_df_cases = attributes_filter.apply_numeric(df, 34, 500,
parameters={
attributes_filter.Parameters.CASE_ID_KEY: "case:concept:name",
attributes_filter.Parameters.ATTRIBUTE_KEY: "amount",
attributes_filter.Parameters.STREAM_FILTER_KEY1: "concept:name",
attributes_filter.Parameters.STREAM_FILTER_VALUE1: "Add penalty"})
def test_40(self):
import os
from pm4py.objects.log.importer.xes import importer as xes_importer
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
from pm4py.algo.discovery.alpha import algorithm as alpha_miner
net, initial_marking, final_marking = alpha_miner.apply(log)
def test_41(self):
import os
from pm4py.objects.log.importer.xes import importer as xes_importer
from pm4py.algo.discovery.inductive import algorithm as inductive_miner
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
process_tree = inductive_miner.apply(log)
net, initial_marking, final_marking = process_tree_converter.apply(process_tree)
from pm4py.algo.discovery.inductive import algorithm as inductive_miner
from pm4py.visualization.process_tree import visualizer as pt_visualizer
tree = inductive_miner.apply(log)
gviz = pt_visualizer.apply(tree)
from pm4py.objects.conversion.process_tree import converter as pt_converter
net, initial_marking, final_marking = pt_converter.apply(tree, variant=pt_converter.Variants.TO_PETRI_NET)
def test_42(self):
from pm4py.objects.log.importer.xes import importer as xes_importer
import os
log_path = os.path.join("compressed_input_data", "09_a32f0n00.xes.gz")
log = xes_importer.apply(log_path)
from pm4py.algo.discovery.heuristics import algorithm as heuristics_miner
heu_net = heuristics_miner.apply_heu(log, parameters={
heuristics_miner.Variants.CLASSIC.value.Parameters.DEPENDENCY_THRESH: 0.99})
from pm4py.visualization.heuristics_net import visualizer as hn_visualizer
gviz = hn_visualizer.apply(heu_net)
from pm4py.algo.discovery.heuristics import algorithm as heuristics_miner
net, im, fm = heuristics_miner.apply(log, parameters={
heuristics_miner.Variants.CLASSIC.value.Parameters.DEPENDENCY_THRESH: 0.99})
from pm4py.visualization.petri_net import visualizer as pn_visualizer
gviz = pn_visualizer.apply(net, im, fm)
def test_43(self):
import os
from pm4py.objects.log.importer.xes import importer as xes_importer
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
from pm4py.algo.discovery.dfg import algorithm as dfg_discovery
dfg = dfg_discovery.apply(log)
from pm4py.visualization.dfg import visualizer as dfg_visualization
gviz = dfg_visualization.apply(dfg, log=log, variant=dfg_visualization.Variants.FREQUENCY)
def test_44(self):
import os
from pm4py.objects.log.importer.xes import importer as xes_importer
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
from pm4py.algo.discovery.dfg import algorithm as dfg_discovery
from pm4py.visualization.dfg import visualizer as dfg_visualization
dfg = dfg_discovery.apply(log, variant=dfg_discovery.Variants.PERFORMANCE)
gviz = dfg_visualization.apply(dfg, log=log, variant=dfg_visualization.Variants.PERFORMANCE)
def test_45(self):
import os
from pm4py.objects.log.importer.xes import importer as xes_importer
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
from pm4py.algo.discovery.dfg import algorithm as dfg_discovery
from pm4py.visualization.dfg import visualizer as dfg_visualization
dfg = dfg_discovery.apply(log, variant=dfg_discovery.Variants.PERFORMANCE)
parameters = {dfg_visualization.Variants.PERFORMANCE.value.Parameters.FORMAT: "svg"}
gviz = dfg_visualization.apply(dfg, log=log, variant=dfg_visualization.Variants.PERFORMANCE,
parameters=parameters)
dfg_visualization.save(gviz, os.path.join("test_output_data", "dfg.svg"))
os.remove(os.path.join("test_output_data", "dfg.svg"))
def test_46(self):
from pm4py.objects.log.importer.xes import importer as xes_importer
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
from pm4py.algo.discovery.dfg import algorithm as dfg_discovery
dfg = dfg_discovery.apply(log)
from pm4py.objects.conversion.dfg import converter as dfg_mining
net, im, fm = dfg_mining.apply(dfg)
def test_47(self):
log = self.load_running_example_xes()
import os
from pm4py.algo.discovery.inductive import algorithm as inductive_miner
process_tree = inductive_miner.apply(log)
net, initial_marking, final_marking = process_tree_converter.apply(process_tree)
from pm4py.visualization.petri_net import visualizer as pn_visualizer
parameters = {pn_visualizer.Variants.WO_DECORATION.value.Parameters.FORMAT: "png"}
gviz = pn_visualizer.apply(net, initial_marking, final_marking, parameters=parameters,
variant=pn_visualizer.Variants.FREQUENCY, log=log)
pn_visualizer.save(gviz, os.path.join("test_output_data", "inductive_frequency.png"))
os.remove(os.path.join("test_output_data", "inductive_frequency.png"))
def test_48(self):
import os
from pm4py.objects.log.importer.xes import importer as xes_importer
from pm4py.algo.discovery.alpha import algorithm as alpha_miner
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
parameters = {alpha_miner.Variants.ALPHA_VERSION_CLASSIC.value.Parameters.ACTIVITY_KEY: "concept:name"}
net, initial_marking, final_marking = alpha_miner.apply(log, parameters=parameters)
def test_49(self):
import os
from pm4py.objects.log.importer.xes import importer as xes_importer
log = xes_importer.apply(os.path.join("input_data", "receipt.xes"))
classifiers = log.classifiers
from pm4py.objects.log.util import insert_classifier
log, activity_key = insert_classifier.insert_activity_classifier_attribute(log, "Activity classifier")
from pm4py.algo.discovery.alpha import algorithm as alpha_miner
parameters = {alpha_miner.Variants.ALPHA_VERSION_CLASSIC.value.Parameters.ACTIVITY_KEY: activity_key}
net, initial_marking, final_marking = alpha_miner.apply(log, parameters=parameters)
def test_50(self):
import os
from pm4py.objects.log.importer.xes import importer as xes_importer
log = xes_importer.apply(os.path.join("input_data", "receipt.xes"))
for trace in log:
for event in trace:
event["customClassifier"] = event["concept:name"] + event["lifecycle:transition"]
from pm4py.algo.discovery.alpha import algorithm as alpha_miner
parameters = {alpha_miner.Variants.ALPHA_VERSION_CLASSIC.value.Parameters.ACTIVITY_KEY: "customClassifier"}
net, initial_marking, final_marking = alpha_miner.apply(log, parameters=parameters)
def test_51(self):
import os
from pm4py.objects.petri_net.importer import importer as pnml_importer
net, initial_marking, final_marking = pnml_importer.apply(
os.path.join("input_data", "running-example.pnml"))
from pm4py.visualization.petri_net import visualizer as pn_visualizer
gviz = pn_visualizer.apply(net, initial_marking, final_marking)
from pm4py.objects.petri_net.exporter import exporter as pnml_exporter
pnml_exporter.apply(net, initial_marking, "petri.pnml")
pnml_exporter.apply(net, initial_marking, "petri_final.pnml", final_marking=final_marking)
os.remove("petri.pnml")
os.remove("petri_final.pnml")
from pm4py.objects.petri_net import semantics
transitions = semantics.enabled_transitions(net, initial_marking)
places = net.places
transitions = net.transitions
arcs = net.arcs
for place in places:
stru = "\nPLACE: " + place.name
for arc in place.in_arcs:
stru = str(arc.source.name) + " " + str(arc.source.label)
def test_52(self):
# creating an empty Petri net
from pm4py.objects.petri_net.obj import PetriNet, Marking
net = PetriNet("new_petri_net")
# creating source, p_1 and sink place
source = PetriNet.Place("source")
sink = PetriNet.Place("sink")
p_1 = PetriNet.Place("p_1")
# add the places to the Petri Net
net.places.add(source)
net.places.add(sink)
net.places.add(p_1)
# Create transitions
t_1 = PetriNet.Transition("name_1", "label_1")
t_2 = PetriNet.Transition("name_2", "label_2")
# Add the transitions to the Petri Net
net.transitions.add(t_1)
net.transitions.add(t_2)
# Add arcs
from pm4py.objects.petri_net.utils import petri_utils
petri_utils.add_arc_from_to(source, t_1, net)
petri_utils.add_arc_from_to(t_1, p_1, net)
petri_utils.add_arc_from_to(p_1, t_2, net)
petri_utils.add_arc_from_to(t_2, sink, net)
# Adding tokens
initial_marking = Marking()
initial_marking[source] = 1
final_marking = Marking()
final_marking[sink] = 1
from pm4py.objects.petri_net.exporter import exporter as pnml_exporter
pnml_exporter.apply(net, initial_marking, "createdPetriNet1.pnml", final_marking=final_marking)
from pm4py.visualization.petri_net import visualizer as pn_visualizer
gviz = pn_visualizer.apply(net, initial_marking, final_marking)
from pm4py.visualization.petri_net import visualizer as pn_visualizer
parameters = {pn_visualizer.Variants.WO_DECORATION.value.Parameters.FORMAT: "svg"}
gviz = pn_visualizer.apply(net, initial_marking, final_marking, parameters=parameters)
from pm4py.visualization.petri_net import visualizer as pn_visualizer
parameters = {pn_visualizer.Variants.WO_DECORATION.value.Parameters.FORMAT: "svg"}
gviz = pn_visualizer.apply(net, initial_marking, final_marking, parameters=parameters)
pn_visualizer.save(gviz, "alpha.svg")
os.remove("createdPetriNet1.pnml")
os.remove("alpha.svg")
def test_56(self):
import os
from pm4py.objects.log.importer.xes import importer as xes_importer
from pm4py.algo.discovery.inductive import algorithm as inductive_miner
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
process_tree = inductive_miner.apply(log)
net, initial_marking, final_marking = process_tree_converter.apply(process_tree)
from pm4py.algo.conformance.alignments.petri_net import algorithm as alignments
alignments = alignments.apply_log(log, net, initial_marking, final_marking)
def test_57(self):
import os
from pm4py.objects.log.importer.xes import importer as xes_importer
from pm4py.algo.discovery.inductive import algorithm as inductive_miner
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
for trace in log:
for event in trace:
event["customClassifier"] = event["concept:name"] + event["concept:name"]
from pm4py.algo.conformance.alignments.petri_net import algorithm as alignments
# define the activity key in the parameters
parameters = {inductive_miner.Parameters.ACTIVITY_KEY: "customClassifier",
alignments.Variants.VERSION_STATE_EQUATION_A_STAR.value.Parameters.ACTIVITY_KEY: "customClassifier"}
# calculate process model using the given classifier
process_tree = inductive_miner.apply(log)
net, initial_marking, final_marking = process_tree_converter.apply(process_tree)
alignments = alignments.apply_log(log, net, initial_marking, final_marking, parameters=parameters)
from pm4py.algo.evaluation.replay_fitness import algorithm as replay_fitness
log_fitness = replay_fitness.evaluate(alignments, variant=replay_fitness.Variants.ALIGNMENT_BASED)
def test_58(self):
import os
from pm4py.objects.log.importer.xes import importer as xes_importer
from pm4py.algo.discovery.inductive import algorithm as inductive_miner
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
process_tree = inductive_miner.apply(log)
net, initial_marking, final_marking = process_tree_converter.apply(process_tree)
from pm4py.algo.conformance.alignments.petri_net import algorithm as alignments
model_cost_function = dict()
sync_cost_function = dict()
for t in net.transitions:
# if the label is not None, we have a visible transition
if t.label is not None:
# associate cost 1000 to each move-on-model associated to visible transitions
model_cost_function[t] = 1000
# associate cost 0 to each move-on-log
sync_cost_function[t] = 0
else:
# associate cost 1 to each move-on-model associated to hidden transitions
model_cost_function[t] = 1
parameters = {}
parameters[
alignments.Variants.VERSION_STATE_EQUATION_A_STAR.value.Parameters.PARAM_MODEL_COST_FUNCTION] = model_cost_function
parameters[
alignments.Variants.VERSION_STATE_EQUATION_A_STAR.value.Parameters.PARAM_SYNC_COST_FUNCTION] = sync_cost_function
alignments = alignments.apply_log(log, net, initial_marking, final_marking, parameters=parameters)
def test_59(self):
from pm4py.algo.simulation.tree_generator import algorithm as tree_gen
parameters = {}
tree = tree_gen.apply(parameters=parameters)
from pm4py.objects.process_tree import semantics
log = semantics.generate_log(tree, no_traces=100)
from pm4py.objects.conversion.process_tree import converter as pt_converter
net, im, fm = pt_converter.apply(tree)
from pm4py.visualization.process_tree import visualizer as pt_visualizer
gviz = pt_visualizer.apply(tree, parameters={pt_visualizer.Variants.WO_DECORATION.value.Parameters.FORMAT: "png"})
def test_60(self):
if importlib.util.find_spec("sklearn"):
import os
from pm4py.objects.log.importer.xes import importer as xes_importer
log = xes_importer.apply(os.path.join("input_data", "roadtraffic50traces.xes"))
from pm4py.algo.transformation.log_to_features.variants import trace_based
str_trace_attributes = []
str_event_attributes = ["concept:name"]
num_trace_attributes = []
num_event_attributes = ["amount"]
data, feature_names = trace_based.apply(log)
data, feature_names = trace_based.apply(log, parameters={"str_tr_attr": str_trace_attributes, "str_ev_attr": str_event_attributes, "num_tr_attr": num_trace_attributes, "num_ev_attr": num_event_attributes})
from pm4py.objects.log.util import get_class_representation
target, classes = get_class_representation.get_class_representation_by_str_ev_attr_value_value(log,
"concept:name")
from pm4py.util import ml_utils
clf = ml_utils.DecisionTreeClassifier()
clf.fit(data, target)
from pm4py.visualization.decisiontree import visualizer as dectree_visualizer
gviz = dectree_visualizer.apply(clf, feature_names, classes)
def test_61(self):
if importlib.util.find_spec("sklearn"):
import os
from pm4py.objects.log.importer.xes import importer as xes_importer
log = xes_importer.apply(os.path.join("input_data", "roadtraffic50traces.xes"))
from pm4py.algo.transformation.log_to_features.variants import trace_based
str_trace_attributes = []
str_event_attributes = ["concept:name"]
num_trace_attributes = []
num_event_attributes = ["amount"]
data, feature_names = trace_based.apply(log)
data, feature_names = trace_based.apply(log, parameters={"str_tr_attr": str_trace_attributes, "str_ev_attr": str_event_attributes, "num_tr_attr": num_trace_attributes, "num_ev_attr": num_event_attributes})
from pm4py.objects.log.util import get_class_representation
target, classes = get_class_representation.get_class_representation_by_trace_duration(log, 2 * 8640000)
from pm4py.util import ml_utils
clf = ml_utils.DecisionTreeClassifier()
clf.fit(data, target)
from pm4py.visualization.decisiontree import visualizer as dectree_visualizer
gviz = dectree_visualizer.apply(clf, feature_names, classes)
def test_62(self):
from pm4py.objects.log.importer.xes import importer as xes_importer
xes_importer.Variants.ITERPARSE.value.Parameters.TIMESTAMP_SORT
xes_importer.Variants.ITERPARSE.value.Parameters.TIMESTAMP_KEY
xes_importer.Variants.ITERPARSE.value.Parameters.REVERSE_SORT
xes_importer.Variants.ITERPARSE.value.Parameters.MAX_TRACES
def test_63(self):
from pm4py.objects.log.importer.xes import importer as xes_importer
xes_importer.Variants.LINE_BY_LINE.value.Parameters.TIMESTAMP_SORT
xes_importer.Variants.LINE_BY_LINE.value.Parameters.TIMESTAMP_KEY
xes_importer.Variants.LINE_BY_LINE.value.Parameters.REVERSE_SORT
xes_importer.Variants.LINE_BY_LINE.value.Parameters.MAX_TRACES
xes_importer.Variants.LINE_BY_LINE.value.Parameters.MAX_BYTES
def test_64(self):
from pm4py.objects.conversion.log import converter
converter.Variants.TO_EVENT_LOG.value.Parameters.STREAM_POST_PROCESSING
converter.Variants.TO_EVENT_LOG.value.Parameters.CASE_ATTRIBUTE_PREFIX
converter.Variants.TO_EVENT_LOG.value.Parameters.CASE_ID_KEY
converter.Variants.TO_EVENT_LOG.value.Parameters.DEEP_COPY
converter.Variants.TO_EVENT_LOG.value.Parameters.CASE_ID_KEY
def test_65(self):
from pm4py.objects.conversion.log import converter
converter.Variants.TO_EVENT_STREAM.value.Parameters.STREAM_POST_PROCESSING
converter.Variants.TO_EVENT_STREAM.value.Parameters.CASE_ATTRIBUTE_PREFIX
converter.Variants.TO_EVENT_STREAM.value.Parameters.DEEP_COPY
def test_66(self):
from pm4py.objects.conversion.log import converter
converter.Variants.TO_EVENT_STREAM.value.Parameters.CASE_ATTRIBUTE_PREFIX
converter.Variants.TO_EVENT_STREAM.value.Parameters.DEEP_COPY
def test_67(self):
from pm4py.objects.log.exporter.xes import exporter as xes_exporter
xes_exporter.Variants.ETREE.value.Parameters.COMPRESS
def test_tbr_diagn_1(self):
import os
from pm4py.objects.log.importer.xes import importer as xes_importer
log = xes_importer.apply(os.path.join("input_data", "receipt.xes"))
from pm4py.algo.filtering.log.variants import variants_filter
filtered_log = variants_filter.filter_log_variants_percentage(log, 0.2)
from pm4py.algo.discovery.inductive import algorithm as inductive_miner
process_tree = inductive_miner.apply(log)
net, initial_marking, final_marking = process_tree_converter.apply(process_tree)
from pm4py.algo.conformance.tokenreplay import algorithm as token_based_replay
parameters_tbr = {token_based_replay.Variants.TOKEN_REPLAY.value.Parameters.DISABLE_VARIANTS: True,
token_based_replay.Variants.TOKEN_REPLAY.value.Parameters.ENABLE_PLTR_FITNESS: True}
replayed_traces, place_fitness, trans_fitness, unwanted_activities = token_based_replay.apply(log, net,
initial_marking,
final_marking,
parameters=parameters_tbr)
from pm4py.algo.conformance.tokenreplay.diagnostics import duration_diagnostics
trans_diagnostics = duration_diagnostics.diagnose_from_trans_fitness(log, trans_fitness)
for trans in trans_diagnostics:
#print(trans, trans_diagnostics[trans])
pass
from pm4py.algo.conformance.tokenreplay.diagnostics import duration_diagnostics
act_diagnostics = duration_diagnostics.diagnose_from_notexisting_activities(log, unwanted_activities)
for act in act_diagnostics:
#print(act, act_diagnostics[act])
pass
def test_tbr_diagn_2(self):
if importlib.util.find_spec("sklearn"):
import os
from pm4py.objects.log.importer.xes import importer as xes_importer
log = xes_importer.apply(os.path.join("input_data", "receipt.xes"))
from pm4py.algo.filtering.log.variants import variants_filter
filtered_log = variants_filter.filter_log_variants_percentage(log, 0.2)
from pm4py.algo.discovery.inductive import algorithm as inductive_miner
process_tree = inductive_miner.apply(log)
net, initial_marking, final_marking = process_tree_converter.apply(process_tree)
# build decision trees
string_attributes = ["org:group"]
numeric_attributes = []
parameters = {"string_attributes": string_attributes, "numeric_attributes": numeric_attributes}
from pm4py.algo.conformance.tokenreplay import algorithm as token_based_replay
parameters_tbr = {token_based_replay.Variants.TOKEN_REPLAY.value.Parameters.DISABLE_VARIANTS: True,
token_based_replay.Variants.TOKEN_REPLAY.value.Parameters.ENABLE_PLTR_FITNESS: True}
replayed_traces, place_fitness, trans_fitness, unwanted_activities = token_based_replay.apply(log, net,
initial_marking,
final_marking,
parameters=parameters_tbr)
from pm4py.algo.conformance.tokenreplay.diagnostics import root_cause_analysis
trans_root_cause = root_cause_analysis.diagnose_from_trans_fitness(log, trans_fitness, parameters=parameters)
from pm4py.visualization.decisiontree import visualizer as dt_vis
for trans in trans_root_cause:
clf = trans_root_cause[trans]["clf"]
feature_names = trans_root_cause[trans]["feature_names"]
classes = trans_root_cause[trans]["classes"]
# visualization could be called
gviz = dt_vis.apply(clf, feature_names, classes)
break
from pm4py.algo.conformance.tokenreplay.diagnostics import root_cause_analysis
act_root_cause = root_cause_analysis.diagnose_from_notexisting_activities(log, unwanted_activities,
parameters=parameters)
from pm4py.visualization.decisiontree import visualizer as dt_vis
for act in act_root_cause:
clf = act_root_cause[act]["clf"]
feature_names = act_root_cause[act]["feature_names"]
classes = act_root_cause[act]["classes"]
# visualization could be called
gviz = dt_vis.apply(clf, feature_names, classes)
break
def test_max_decomp(self):
import os
from pm4py.objects.log.importer.xes import importer as xes_importer
from pm4py.algo.discovery.alpha import algorithm as alpha_miner
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
net, im, fm = alpha_miner.apply(log)
from pm4py.objects.petri_net.utils.decomposition import decompose
list_nets = decompose(net, im, fm)
from pm4py.visualization.petri_net import visualizer
gviz = []
for index, model in enumerate(list_nets):
subnet, s_im, s_fm = model
gviz.append(visualizer.apply(subnet, s_im, s_fm, parameters={visualizer.Variants.WO_DECORATION.value.Parameters.FORMAT: "png"}))
break
def test_reach_graph(self):
import os
from pm4py.objects.log.importer.xes import importer as xes_importer
from pm4py.algo.discovery.alpha import algorithm as alpha_miner
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
net, im, fm = alpha_miner.apply(log)
from pm4py.objects.petri_net.utils import reachability_graph
ts = reachability_graph.construct_reachability_graph(net, im)
from pm4py.visualization.transition_system import visualizer as ts_visualizer
gviz = ts_visualizer.apply(ts, parameters={ts_visualizer.Variants.VIEW_BASED.value.Parameters.FORMAT: "svg"})
def test_decomp(self):
import os
from pm4py.objects.log.importer.xes import importer as xes_importer
from pm4py.algo.discovery.alpha import algorithm as alpha_miner
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
net, im, fm = alpha_miner.apply(log)
from pm4py.algo.conformance.alignments.decomposed import algorithm as decomp_alignments
conf = decomp_alignments.apply(log, net, im, fm, parameters={
decomp_alignments.Variants.RECOMPOS_MAXIMAL.value.Parameters.PARAM_THRESHOLD_BORDER_AGREEMENT: 2})
from pm4py.algo.evaluation.replay_fitness import algorithm as rp_fitness_evaluator
fitness = rp_fitness_evaluator.evaluate(conf, variant=rp_fitness_evaluator.Variants.ALIGNMENT_BASED)
def test_footprints(self):
from pm4py.objects.log.importer.xes import importer as xes_importer
import os
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
from pm4py.algo.discovery.inductive import algorithm as inductive_miner
process_tree = inductive_miner.apply(log)
net, im, fm = process_tree_converter.apply(process_tree)
from pm4py.algo.discovery.footprints import algorithm as footprints_discovery
fp_log = footprints_discovery.apply(log, variant=footprints_discovery.Variants.ENTIRE_EVENT_LOG)
from pm4py.algo.discovery.footprints import algorithm as footprints_discovery
fp_trace_by_trace = footprints_discovery.apply(log, variant=footprints_discovery.Variants.TRACE_BY_TRACE)
fp_net = footprints_discovery.apply(net, im, fm)
from pm4py.visualization.footprints import visualizer as fp_visualizer
gviz = fp_visualizer.apply(fp_net, parameters={fp_visualizer.Variants.SINGLE.value.Parameters.FORMAT: "svg"})
from pm4py.visualization.footprints import visualizer as fp_visualizer
gviz = fp_visualizer.apply(fp_log, fp_net,
parameters={fp_visualizer.Variants.COMPARISON.value.Parameters.FORMAT: "svg"})
from pm4py.objects.log.importer.xes import importer as xes_importer
import os
from copy import deepcopy
from pm4py.algo.filtering.log.variants import variants_filter
log = xes_importer.apply(os.path.join("input_data", "receipt.xes"))
filtered_log = variants_filter.filter_log_variants_percentage(log, 0.2)
from pm4py.algo.discovery.inductive import algorithm as inductive_miner
process_tree = inductive_miner.apply(log)
net, im, fm = process_tree_converter.apply(process_tree)
from pm4py.algo.conformance.footprints import algorithm as footprints_conformance
conf_fp = footprints_conformance.apply(fp_trace_by_trace, fp_net)
def test_log_skeleton(self):
from pm4py.objects.log.importer.xes import importer as xes_importer
import os
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
from pm4py.algo.discovery.log_skeleton import algorithm as lsk_discovery
skeleton = lsk_discovery.apply(log, parameters={
lsk_discovery.Variants.CLASSIC.value.Parameters.NOISE_THRESHOLD: 0.0})
from pm4py.objects.log.importer.xes import importer as xes_importer
import os
log = xes_importer.apply(os.path.join("input_data", "receipt.xes"))
from copy import deepcopy
from pm4py.algo.filtering.log.variants import variants_filter
filtered_log = variants_filter.filter_log_variants_percentage(log, 0.2)
from pm4py.algo.conformance.log_skeleton import algorithm as lsk_conformance
conf_result = lsk_conformance.apply(log, skeleton)
from pm4py.algo.discovery.log_skeleton import algorithm as lsk_discovery
skeleton = lsk_discovery.apply(log, parameters={
lsk_discovery.Variants.CLASSIC.value.Parameters.NOISE_THRESHOLD: 0.03})
from pm4py.algo.conformance.log_skeleton import algorithm as lsk_conformance
conf_result = lsk_conformance.apply(log, skeleton)
def test_throughput_time(self):
from pm4py.objects.log.importer.xes import importer as xes_importer
import os
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
from pm4py.statistics.traces.generic.log import case_statistics
all_case_durations = case_statistics.get_all_case_durations(log, parameters={
case_statistics.Parameters.TIMESTAMP_KEY: "time:timestamp"})
from pm4py.statistics.traces.generic.log import case_statistics
median_case_duration = case_statistics.get_median_case_duration(log, parameters={
case_statistics.Parameters.TIMESTAMP_KEY: "time:timestamp"
})
def test_case_arrival(self):
from pm4py.objects.log.importer.xes import importer as xes_importer
import os
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
from pm4py.statistics.traces.generic.log import case_arrival
case_arrival_ratio = case_arrival.get_case_arrival_avg(log, parameters={
case_arrival.Parameters.TIMESTAMP_KEY: "time:timestamp"})
from pm4py.statistics.traces.generic.log import case_arrival
case_dispersion_ratio = case_arrival.get_case_dispersion_avg(log, parameters={
case_arrival.Parameters.TIMESTAMP_KEY: "time:timestamp"})
def test_ps(self):
from pm4py.objects.log.importer.xes import importer as xes_importer
import os
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
from pm4py.algo.discovery.performance_spectrum import algorithm as performance_spectrum
ps = performance_spectrum.apply(log, ["register request", "decide"],
parameters={performance_spectrum.Parameters.ACTIVITY_KEY: "concept:name",
performance_spectrum.Parameters.TIMESTAMP_KEY: "time:timestamp"})
def test_business_hours(self):
from pm4py.util.business_hours import BusinessHours
from datetime import datetime
from pm4py.util.dt_parsing.variants import strpfromiso
from pm4py.util import constants
st = strpfromiso.fix_naivety(datetime.fromtimestamp(100000000))
et = strpfromiso.fix_naivety(datetime.fromtimestamp(200000000))
bh_object = BusinessHours(st, et)
worked_time = bh_object.get_seconds()
bh_object = BusinessHours(st, et, business_hour_slots=constants.DEFAULT_BUSINESS_HOUR_SLOTS)
worked_time = bh_object.get_seconds()
def test_cycle_waiting_time(self):
from pm4py.objects.log.importer.xes import importer as xes_importer
import os
log = xes_importer.apply(os.path.join("input_data", "receipt.xes"))
from pm4py.objects.log.util import interval_lifecycle
enriched_log = interval_lifecycle.assign_lead_cycle_time(log)
def test_distr_case_duration(self):
import os
from pm4py.objects.log.importer.xes import importer as xes_importer
log_path = os.path.join("input_data", "receipt.xes")
log = xes_importer.apply(log_path)
from pm4py.util import constants
from pm4py.statistics.traces.generic.log import case_statistics
x, y = case_statistics.get_kde_caseduration(log, parameters={
constants.PARAMETER_CONSTANT_TIMESTAMP_KEY: "time:timestamp"})
if importlib.util.find_spec("matplotlib"):
from pm4py.visualization.graphs import visualizer as graphs_visualizer
gviz = graphs_visualizer.apply_plot(x, y, variant=graphs_visualizer.Variants.CASES)
gviz = graphs_visualizer.apply_semilogx(x, y, variant=graphs_visualizer.Variants.CASES)
def test_distr_num_attribute(self):
import os
from pm4py.objects.log.importer.xes import importer as xes_importer
log_path = os.path.join("input_data", "roadtraffic100traces.xes")
log = xes_importer.apply(log_path)
from pm4py.algo.filtering.log.attributes import attributes_filter
x, y = attributes_filter.get_kde_numeric_attribute(log, "amount")
if importlib.util.find_spec("matplotlib"):
from pm4py.visualization.graphs import visualizer as graphs_visualizer
gviz = graphs_visualizer.apply_plot(x, y, variant=graphs_visualizer.Variants.ATTRIBUTES)
from pm4py.visualization.graphs import visualizer as graphs_visualizer
gviz = graphs_visualizer.apply_semilogx(x, y, variant=graphs_visualizer.Variants.ATTRIBUTES)
def test_evaluation(self):
import os
from pm4py.objects.log.importer.xes import importer as xes_importer
from pm4py.algo.discovery.alpha import algorithm as alpha_miner
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
net, im, fm = alpha_miner.apply(log)
from pm4py.algo.evaluation.replay_fitness import algorithm as replay_fitness_evaluator
fitness = replay_fitness_evaluator.apply(log, net, im, fm,
variant=replay_fitness_evaluator.Variants.TOKEN_BASED)
from pm4py.algo.evaluation.replay_fitness import algorithm as replay_fitness_evaluator
fitness = replay_fitness_evaluator.apply(log, net, im, fm,
variant=replay_fitness_evaluator.Variants.ALIGNMENT_BASED)
from pm4py.algo.evaluation.precision import algorithm as precision_evaluator
prec = precision_evaluator.apply(log, net, im, fm, variant=precision_evaluator.Variants.ETCONFORMANCE_TOKEN)
from pm4py.algo.evaluation.precision import algorithm as precision_evaluator
prec = precision_evaluator.apply(log, net, im, fm, variant=precision_evaluator.Variants.ALIGN_ETCONFORMANCE)
from pm4py.algo.evaluation.generalization import algorithm as generalization_evaluator
gen = generalization_evaluator.apply(log, net, im, fm)
from pm4py.algo.evaluation.simplicity import algorithm as simplicity_evaluator
simp = simplicity_evaluator.apply(net)
def test_sna(self):
if importlib.util.find_spec("pyvis"):
import os
from pm4py.objects.log.importer.xes import importer as xes_importer
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
from pm4py.algo.organizational_mining.sna import algorithm as sna
hw_values = sna.apply(log, variant=sna.Variants.HANDOVER_LOG)
from pm4py.visualization.sna import visualizer as sna_visualizer
gviz_hw_py = sna_visualizer.apply(hw_values, variant=sna_visualizer.Variants.PYVIS)
from pm4py.algo.organizational_mining.sna import algorithm as sna
sub_values = sna.apply(log, variant=sna.Variants.SUBCONTRACTING_LOG)
from pm4py.visualization.sna import visualizer as sna_visualizer
gviz_sub_py = sna_visualizer.apply(sub_values, variant=sna_visualizer.Variants.PYVIS)
from pm4py.algo.organizational_mining.sna import algorithm as sna
wt_values = sna.apply(log, variant=sna.Variants.WORKING_TOGETHER_LOG)
from pm4py.visualization.sna import visualizer as sna_visualizer
gviz_wt_py = sna_visualizer.apply(wt_values, variant=sna_visualizer.Variants.PYVIS)
from pm4py.algo.organizational_mining.sna import algorithm as sna
ja_values = sna.apply(log, variant=sna.Variants.JOINTACTIVITIES_LOG)
from pm4py.visualization.sna import visualizer as sna_visualizer
gviz_ja_py = sna_visualizer.apply(ja_values, variant=sna_visualizer.Variants.PYVIS)
from pm4py.algo.organizational_mining.roles import algorithm as roles_discovery
roles = roles_discovery.apply(log)
def test_playout(self):
import os
from pm4py.objects.log.importer.xes import importer as xes_importer
from pm4py.algo.discovery.alpha import algorithm as alpha_miner
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
net, im, fm = alpha_miner.apply(log)
from pm4py.algo.simulation.playout.petri_net import algorithm
simulated_log = algorithm.apply(net, im, variant=algorithm.Variants.BASIC_PLAYOUT,
parameters={algorithm.Variants.BASIC_PLAYOUT.value.Parameters.NO_TRACES: 50})
from pm4py.algo.simulation.playout.petri_net import algorithm
simulated_log = algorithm.apply(net, im, variant=algorithm.Variants.EXTENSIVE,
parameters={algorithm.Variants.EXTENSIVE.value.Parameters.MAX_TRACE_LENGTH: 7})
def test_ctmc(self):
import os
from pm4py.objects.log.importer.xes import importer as xes_importer
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
from pm4py.algo.discovery.dfg import algorithm as dfg_discovery
dfg_perf = dfg_discovery.apply(log, variant=dfg_discovery.Variants.PERFORMANCE)
from pm4py.statistics.start_activities.log import get as start_activities
from pm4py.statistics.end_activities.log import get as end_activities
sa = start_activities.get_start_activities(log)
ea = end_activities.get_end_activities(log)
from pm4py.algo.filtering.log.variants import variants_filter
log = variants_filter.filter_log_variants_percentage(log, 0.2)
from pm4py.objects.stochastic_petri import ctmc
reach_graph, tang_reach_graph, stochastic_map, q_matrix = ctmc.get_tangible_reachability_and_q_matrix_from_dfg_performance(
dfg_perf, parameters={"start_activities": sa, "end_activities": ea})
# pick the source state
state = [x for x in tang_reach_graph.states if x.name == "source1"][0]
# analyse the distribution over the states of the system starting from the source after 172800.0 seconds (2 days)
transient_result = ctmc.transient_analysis_from_tangible_q_matrix_and_single_state(tang_reach_graph, q_matrix,
state,
172800.0)
if __name__ == "__main__":
unittest.main()
|