File size: 10,724 Bytes
8097001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
import unittest

from pm4py.algo.conformance.alignments.petri_net import algorithm as align_alg
from pm4py.algo.conformance.tokenreplay import algorithm as tr_alg
from pm4py.algo.discovery.alpha import algorithm as alpha_miner
from pm4py.algo.discovery.dfg import algorithm as dfg_mining
from pm4py.algo.discovery.heuristics import algorithm as heuristics_miner
from pm4py.algo.discovery.inductive import algorithm as inductive_miner
from pm4py.algo.discovery.transition_system import algorithm as ts_disc
from pm4py.algo.evaluation import algorithm as eval_alg
from pm4py.algo.evaluation.generalization import algorithm as generalization
from pm4py.algo.evaluation.precision import algorithm as precision_evaluator
from pm4py.algo.evaluation.replay_fitness import algorithm as rp_fit
from pm4py.algo.evaluation.simplicity import algorithm as simplicity
from pm4py.objects.conversion.log import converter as log_conversion
from pm4py.objects.log.exporter.xes import exporter as xes_exporter
from pm4py.objects.log.importer.xes import importer as xes_importer
from pm4py.objects.log.util import dataframe_utils
from pm4py.util import constants, pandas_utils
from pm4py.objects.conversion.process_tree import converter as process_tree_converter


class MainFactoriesTest(unittest.TestCase):
    def test_nonstandard_exporter(self):
        log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
        xes_exporter.apply(log, os.path.join("test_output_data", "running-example.xes"),
                           variant=xes_exporter.Variants.LINE_BY_LINE)
        os.remove(os.path.join("test_output_data", "running-example.xes"))

    def test_alphaminer_log(self):
        log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
        net, im, fm = alpha_miner.apply(log)
        aligned_traces_tr = tr_alg.apply(log, net, im, fm)
        aligned_traces_alignments = align_alg.apply(log, net, im, fm)
        evaluation = eval_alg.apply(log, net, im, fm)
        fitness = rp_fit.apply(log, net, im, fm)
        precision = precision_evaluator.apply(log, net, im, fm)
        gen = generalization.apply(log, net, im, fm)
        sim = simplicity.apply(net)

    def test_memory_efficient_iterparse(self):
        log = xes_importer.apply(os.path.join("input_data", "running-example.xes"),
                                 variant=xes_importer.Variants.ITERPARSE_MEM_COMPRESSED)

    def test_alphaminer_stream(self):
        df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv"))
        df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
        stream = log_conversion.apply(df, variant=log_conversion.TO_EVENT_STREAM)
        net, im, fm = alpha_miner.apply(stream)
        aligned_traces_tr = tr_alg.apply(stream, net, im, fm)
        aligned_traces_alignments = align_alg.apply(stream, net, im, fm)
        evaluation = eval_alg.apply(stream, net, im, fm)
        fitness = rp_fit.apply(stream, net, im, fm)
        precision = precision_evaluator.apply(stream, net, im, fm)
        gen = generalization.apply(stream, net, im, fm)
        sim = simplicity.apply(net)

    def test_alphaminer_df(self):
        log = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv"))
        log = dataframe_utils.convert_timestamp_columns_in_df(log, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
        net, im, fm = alpha_miner.apply(log)
        aligned_traces_tr = tr_alg.apply(log, net, im, fm)
        aligned_traces_alignments = align_alg.apply(log, net, im, fm)
        evaluation = eval_alg.apply(log, net, im, fm)
        fitness = rp_fit.apply(log, net, im, fm)
        precision = precision_evaluator.apply(log, net, im, fm)
        gen = generalization.apply(log, net, im, fm)
        sim = simplicity.apply(net)

    def test_inductiveminer_log(self):
        log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
        process_tree = inductive_miner.apply(log)
        net, im, fm = process_tree_converter.apply(process_tree)
        aligned_traces_tr = tr_alg.apply(log, net, im, fm)
        aligned_traces_alignments = align_alg.apply(log, net, im, fm)
        evaluation = eval_alg.apply(log, net, im, fm)
        fitness = rp_fit.apply(log, net, im, fm)
        precision = precision_evaluator.apply(log, net, im, fm)
        gen = generalization.apply(log, net, im, fm)
        sim = simplicity.apply(net)

    def test_inductiveminer_df(self):
        log = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv"))
        log = dataframe_utils.convert_timestamp_columns_in_df(log, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
        process_tree = inductive_miner.apply(log)
        net, im, fm = process_tree_converter.apply(process_tree)
        aligned_traces_tr = tr_alg.apply(log, net, im, fm)
        aligned_traces_alignments = align_alg.apply(log, net, im, fm)
        evaluation = eval_alg.apply(log, net, im, fm)
        fitness = rp_fit.apply(log, net, im, fm)
        precision = precision_evaluator.apply(log, net, im, fm)
        gen = generalization.apply(log, net, im, fm)
        sim = simplicity.apply(net)

    def test_heu_log(self):
        log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
        net, im, fm = heuristics_miner.apply(log)
        aligned_traces_tr = tr_alg.apply(log, net, im, fm)
        aligned_traces_alignments = align_alg.apply(log, net, im, fm)
        evaluation = eval_alg.apply(log, net, im, fm)
        fitness = rp_fit.apply(log, net, im, fm)
        precision = precision_evaluator.apply(log, net, im, fm)
        gen = generalization.apply(log, net, im, fm)
        sim = simplicity.apply(net)

    def test_heu_stream(self):
        df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv"))
        df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
        stream = log_conversion.apply(df, variant=log_conversion.TO_EVENT_STREAM)
        net, im, fm = heuristics_miner.apply(stream)
        aligned_traces_tr = tr_alg.apply(stream, net, im, fm)
        aligned_traces_alignments = align_alg.apply(stream, net, im, fm)
        evaluation = eval_alg.apply(stream, net, im, fm)
        fitness = rp_fit.apply(stream, net, im, fm)
        precision = precision_evaluator.apply(stream, net, im, fm)
        gen = generalization.apply(stream, net, im, fm)
        sim = simplicity.apply(net)

    def test_heu_df(self):
        log = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv"))
        log = dataframe_utils.convert_timestamp_columns_in_df(log, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
        net, im, fm = heuristics_miner.apply(log)
        aligned_traces_tr = tr_alg.apply(log, net, im, fm)
        aligned_traces_alignments = align_alg.apply(log, net, im, fm)
        evaluation = eval_alg.apply(log, net, im, fm)
        fitness = rp_fit.apply(log, net, im, fm)
        precision = precision_evaluator.apply(log, net, im, fm)
        gen = generalization.apply(log, net, im, fm)
        sim = simplicity.apply(net)

    def test_dfg_log(self):
        log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
        dfg = dfg_mining.apply(log)

    def test_dfg_stream(self):
        df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv"))
        df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
        stream = log_conversion.apply(df, variant=log_conversion.TO_EVENT_STREAM)
        dfg = dfg_mining.apply(stream)

    def test_dfg_df(self):
        df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv"))
        df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
        dfg = dfg_mining.apply(df)

    def test_ts_log(self):
        log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
        ts = ts_disc.apply(log)

    def test_ts_stream(self):
        df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv"))
        df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
        stream = log_conversion.apply(df, variant=log_conversion.TO_EVENT_STREAM)
        ts = ts_disc.apply(stream)

    def test_ts_df(self):
        df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv"))
        df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
        ts = ts_disc.apply(df)

    def test_csvimp_xesexp(self):
        df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv"))
        df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
        log0 = log_conversion.apply(df, variant=log_conversion.TO_EVENT_STREAM)
        log = log_conversion.apply(log0, variant=log_conversion.TO_EVENT_LOG)
        stream = log_conversion.apply(log0, variant=log_conversion.TO_EVENT_STREAM)
        df = log_conversion.apply(log0, variant=log_conversion.TO_DATA_FRAME)
        xes_exporter.apply(log, "ru.xes")
        xes_exporter.apply(stream, "ru.xes")
        xes_exporter.apply(df, "ru.xes")
        os.remove('ru.xes')

    def test_xesimp_xesexp(self):
        log0 = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
        log = log_conversion.apply(log0, variant=log_conversion.TO_EVENT_LOG)
        stream = log_conversion.apply(log0, variant=log_conversion.TO_EVENT_STREAM)
        df = log_conversion.apply(log0, variant=log_conversion.TO_DATA_FRAME)
        xes_exporter.apply(log, "ru.xes")
        xes_exporter.apply(stream, "ru.xes")
        xes_exporter.apply(df, "ru.xes")
        os.remove('ru.xes')

    def test_pdimp_xesexp(self):
        log0 = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv"))
        log0 = dataframe_utils.convert_timestamp_columns_in_df(log0, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
        log = log_conversion.apply(log0, variant=log_conversion.TO_EVENT_LOG)
        stream = log_conversion.apply(log0, variant=log_conversion.TO_EVENT_STREAM)
        df = log_conversion.apply(log0, variant=log_conversion.TO_DATA_FRAME)
        xes_exporter.apply(log, "ru.xes")
        xes_exporter.apply(stream, "ru.xes")
        xes_exporter.apply(df, "ru.xes")
        os.remove('ru.xes')


if __name__ == "__main__":
    unittest.main()