File size: 65,810 Bytes
8097001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
import importlib.util
import os
import unittest

import pm4py
from pm4py.objects.bpmn.obj import BPMN
from pm4py.objects.petri_net.obj import PetriNet
from pm4py.objects.process_tree.obj import ProcessTree
from pm4py.util import constants, pandas_utils
from pm4py.objects.log.util import dataframe_utils
from pm4py.objects.log.importer.xes import importer as xes_importer


class SimplifiedInterfaceTest(unittest.TestCase):
    def test_csv(self):
        df = pandas_utils.read_csv("input_data/running-example.csv")
        df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["time:timestamp"])
        df["case:concept:name"] = df["case:concept:name"].astype("string")

        log2 = pm4py.convert_to_event_log(df)
        stream1 = pm4py.convert_to_event_stream(log2)
        df2 = pm4py.convert_to_dataframe(log2)
        pm4py.write_xes(log2, "test_output_data/log.xes")
        os.remove("test_output_data/log.xes")

    def test_alpha_miner(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            net, im, fm = pm4py.discover_petri_net_alpha(log)

    def test_alpha_miner_plus(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            net, im, fm = pm4py.discover_petri_net_alpha_plus(log)

    def test_inductive_miner(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            net, im, fm = pm4py.discover_petri_net_inductive(log)

    def test_inductive_miner_noise(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            net, im, fm = pm4py.discover_petri_net_inductive(log, noise_threshold=0.5)

    def test_heuristics_miner(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            net, im, fm = pm4py.discover_petri_net_heuristics(log)

    def test_inductive_miner_tree(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            tree = pm4py.discover_process_tree_inductive(log)
            tree = pm4py.discover_process_tree_inductive(log, noise_threshold=0.2)

    def test_heuristics_miner_heu_net(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            heu_net = pm4py.discover_heuristics_net(log)

    def test_dfg(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            dfg, sa, ea = pm4py.discover_directly_follows_graph(log)

    def test_read_petri(self):
        net, im, fm = pm4py.read_pnml("input_data/running-example.pnml")

    def test_read_tree(self):
        tree = pm4py.read_ptml("input_data/running-example.ptml")

    def test_read_dfg(self):
        dfg, sa, ea = pm4py.read_dfg("input_data/running-example.dfg")

    def test_alignments_simpl_interface(self):
        for legacy_obj in [True, False]:
            for diagn_df in [True, False]:
                log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
                net, im, fm = pm4py.discover_petri_net_inductive(log)
                aligned_traces = pm4py.conformance_diagnostics_alignments(log, net, im, fm, return_diagnostics_dataframe=diagn_df)

    def test_tbr_simpl_interface(self):
        for legacy_obj in [True, False]:
            for diagn_df in [True, False]:
                log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
                net, im, fm = pm4py.discover_petri_net_inductive(log)
                replayed_traces = pm4py.conformance_diagnostics_token_based_replay(log, net, im, fm, return_diagnostics_dataframe=diagn_df)

    def test_fitness_alignments(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            net, im, fm = pm4py.discover_petri_net_inductive(log)
            fitness_ali = pm4py.fitness_alignments(log, net, im, fm)

    def test_fitness_tbr(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            net, im, fm = pm4py.discover_petri_net_inductive(log)
            fitness_tbr = pm4py.fitness_token_based_replay(log, net, im, fm)

    def test_precision_alignments(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            net, im, fm = pm4py.discover_petri_net_inductive(log)
            precision_ali = pm4py.precision_alignments(log, net, im, fm)

    def test_precision_tbr(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            net, im, fm = pm4py.discover_petri_net_inductive(log)
            precision_tbr = pm4py.precision_token_based_replay(log, net, im, fm)

    def test_convert_to_tree_from_petri(self):
        net, im, fm = pm4py.read_pnml("input_data/running-example.pnml")
        tree = pm4py.convert_to_process_tree(net, im, fm)
        self.assertTrue(isinstance(tree, ProcessTree))

    def test_convert_to_tree_from_bpmn(self):
        bpmn = pm4py.read_bpmn("input_data/running-example.bpmn")
        tree = pm4py.convert_to_process_tree(bpmn)
        self.assertTrue(isinstance(tree, ProcessTree))

    def test_convert_to_net_from_tree(self):
        tree = pm4py.read_ptml("input_data/running-example.ptml")
        net, im, fm = pm4py.convert_to_petri_net(tree)
        self.assertTrue(isinstance(net, PetriNet))

    def test_convert_to_net_from_bpmn(self):
        bpmn = pm4py.read_bpmn("input_data/running-example.bpmn")
        net, im, fm = pm4py.convert_to_petri_net(bpmn)
        self.assertTrue(isinstance(net, PetriNet))

    def test_convert_to_net_from_dfg(self):
        dfg, sa, ea = pm4py.read_dfg("input_data/running-example.dfg")
        net, im, fm = pm4py.convert_to_petri_net(dfg, sa, ea)
        self.assertTrue(isinstance(net, PetriNet))

    def test_convert_to_net_from_heu(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            heu_net = pm4py.discover_heuristics_net(log)
            net, im, fm = pm4py.convert_to_petri_net(heu_net)
            self.assertTrue(isinstance(net, PetriNet))

    def test_convert_to_bpmn_from_tree(self):
        tree = pm4py.read_ptml("input_data/running-example.ptml")
        bpmn = pm4py.convert_to_bpmn(tree)
        self.assertTrue(isinstance(bpmn, BPMN))

    def test_statistics_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.get_start_activities(log)
            pm4py.get_end_activities(log)
            pm4py.get_event_attributes(log)
            pm4py.get_trace_attributes(log)
            pm4py.get_event_attribute_values(log, "org:resource")
            pm4py.get_variants_as_tuples(log)

    def test_statistics_df(self):
        df = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        df["CaseID"] = df["CaseID"].astype("string")

        pm4py.get_start_activities(df, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")
        pm4py.get_end_activities(df, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")
        pm4py.get_event_attributes(df)
        pm4py.get_event_attribute_values(df, "Resource", case_id_key="CaseID")
        pm4py.get_variants_as_tuples(df, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")

    def test_playout(self):
        net, im, fm = pm4py.read_pnml("input_data/running-example.pnml")
        pm4py.play_out(net, im, fm)

    def test_generator(self):
        pm4py.generate_process_tree()

    def test_mark_em_equation(self):
        for legacy_obj in [True, False]:
            log = xes_importer.apply("input_data/running-example.xes")
            net, im, fm = pm4py.read_pnml("input_data/running-example.pnml")
            sync_net, sync_im, sync_fm = pm4py.construct_synchronous_product_net(log[0], net, im, fm)
            m_h = pm4py.solve_marking_equation(sync_net, sync_im, sync_fm)
            em_h = pm4py.solve_extended_marking_equation(log[0], sync_net, sync_im, sync_fm)

    def test_new_statistics_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.get_trace_attribute_values(log, "case:creator")
            pm4py.discover_eventually_follows_graph(log)
            pm4py.get_case_arrival_average(log)

    def test_new_statistics_df(self):
        df = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT,
                                                             timest_columns=["Timestamp"])
        df["CaseID"] = df["CaseID"].astype("string")

        pm4py.discover_eventually_follows_graph(df, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")
        pm4py.get_case_arrival_average(df, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")

    def test_serialization_log(self):
        if importlib.util.find_spec("pyarrow"):
            for legacy_obj in [True, False]:
                log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
                ser = pm4py.serialize(log)
                log2 = pm4py.deserialize(ser)

    def test_serialization_dataframe(self):
        if importlib.util.find_spec("pyarrow"):
            df = pandas_utils.read_csv("input_data/running-example.csv")
            df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["time:timestamp"])
            ser = pm4py.serialize(df)
            df2 = pm4py.deserialize(ser)

    def test_serialization_petri_net(self):
        net, im, fm = pm4py.read_pnml("input_data/running-example.pnml")
        ser = pm4py.serialize(net, im, fm)
        net2, im2, fm2 = pm4py.deserialize(ser)

    def test_serialization_process_tree(self):
        tree = pm4py.read_ptml("input_data/running-example.ptml")
        ser = pm4py.serialize(tree)
        tree2 = pm4py.deserialize(ser)

    def test_serialization_bpmn(self):
        bpmn = pm4py.read_bpmn("input_data/running-example.bpmn")
        ser = pm4py.serialize(bpmn)
        bpmn2 = pm4py.deserialize(ser)

    def test_serialization_dfg(self):
        dfg, sa, ea = pm4py.read_dfg("input_data/running-example.dfg")
        ser = pm4py.serialize(dfg, sa, ea)
        dfg2, sa2, ea2 = pm4py.deserialize(ser)

    def test_minimum_self_distance(self):
        import pm4py
        for legacy_obj in [True, False]:
            log = pm4py.read_xes(os.path.join("input_data", "running-example.xes"), return_legacy_log_object=legacy_obj)
            msd = pm4py.get_minimum_self_distances(log)

    def test_minimum_self_distance_2(self):
        import pm4py
        for legacy_obj in [True, False]:
            log = pm4py.read_xes(os.path.join("input_data", "running-example.xes"), return_legacy_log_object=legacy_obj)
            msd = pm4py.get_minimum_self_distance_witnesses(log)

    def test_marking_equation_net(self):
        import pm4py
        log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
        net, im, fm = pm4py.discover_petri_net_inductive(log)
        pm4py.solve_marking_equation(net, im, fm)

    def test_marking_equation_sync_net(self):
        import pm4py
        log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
        net, im, fm = pm4py.discover_petri_net_inductive(log)
        sync_net, sync_im, sync_fm = pm4py.construct_synchronous_product_net(log[0], net, im, fm)
        res = pm4py.solve_marking_equation(sync_net, sync_im, sync_fm)
        self.assertIsNotNone(res)
        self.assertEqual(res, 11)

    def test_ext_marking_equation_sync_net(self):
        import pm4py
        log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
        net, im, fm = pm4py.discover_petri_net_inductive(log)
        sync_net, sync_im, sync_fm = pm4py.construct_synchronous_product_net(log[0], net, im, fm)
        res = pm4py.solve_extended_marking_equation(log[0], sync_net, sync_im, sync_fm)
        self.assertIsNotNone(res)

    def test_alignments_tree_simpl_interface(self):
        import pm4py
        for legacy_obj in [True, False]:
            for diagn_df in [True, False]:
                log = pm4py.read_xes(os.path.join("input_data", "running-example.xes"), return_legacy_log_object=legacy_obj)
                tree = pm4py.read_ptml(os.path.join("input_data", "running-example.ptml"))
                res = pm4py.conformance_diagnostics_alignments(log, tree, return_diagnostics_dataframe=diagn_df)
                self.assertIsNotNone(res)

    def test_alignments_dfg_simpl_interface(self):
        import pm4py
        for legacy_obj in [True, False]:
            for diagn_df in [True, False]:
                log = pm4py.read_xes(os.path.join("input_data", "running-example.xes"), return_legacy_log_object=legacy_obj)
                dfg, sa, ea = pm4py.read_dfg(os.path.join("input_data", "running-example.dfg"))
                res = pm4py.conformance_diagnostics_alignments(log, dfg, sa, ea, return_diagnostics_dataframe=diagn_df)
                self.assertIsNotNone(res)

    def test_alignments_bpmn_simpl_interface(self):
        import pm4py
        for legacy_obj in [True, False]:
            for diagn_df in [True, False]:
                log = pm4py.read_xes(os.path.join("input_data", "running-example.xes"), return_legacy_log_object=legacy_obj)
                bpmn_graph = pm4py.read_bpmn(os.path.join("input_data", "running-example.bpmn"))
                res = pm4py.conformance_diagnostics_alignments(log, bpmn_graph, return_diagnostics_dataframe=diagn_df)
                self.assertIsNotNone(res)

    def test_discovery_inductive_bpmn(self):
        import pm4py
        for legacy_obj in [True, False]:
            log = pm4py.read_xes(os.path.join("input_data", "running-example.xes"), return_legacy_log_object=legacy_obj)
            bpmn_graph = pm4py.discover_bpmn_inductive(log)
            self.assertIsNotNone(bpmn_graph)

    def test_generation(self):
        import pm4py
        tree = pm4py.generate_process_tree()
        self.assertIsNotNone(tree)

    def test_play_out_tree(self):
        import pm4py
        tree = pm4py.read_ptml(os.path.join("input_data", "running-example.ptml"))
        log = pm4py.play_out(tree)

    def test_play_out_net(self):
        import pm4py
        net, im, fm = pm4py.read_pnml(os.path.join("input_data", "running-example.pnml"))
        log = pm4py.play_out(net, im, fm)

    def test_msd(self):
        import pm4py
        for legacy_obj in [True, False]:
            log = pm4py.read_xes(os.path.join("input_data", "running-example.xes"), return_legacy_log_object=legacy_obj)
            res1 = pm4py.get_minimum_self_distance_witnesses(log)
            res2 = pm4py.get_minimum_self_distances(log)
            self.assertIsNotNone(res1)
            self.assertIsNotNone(res2)

    def test_case_arrival(self):
        import pm4py
        for legacy_obj in [True, False]:
            log = pm4py.read_xes(os.path.join("input_data", "running-example.xes"), return_legacy_log_object=legacy_obj)
            avg = pm4py.get_case_arrival_average(log)
            self.assertIsNotNone(avg)

    def test_efg(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.discover_eventually_follows_graph(log)

    def test_write_pnml(self):
        net, im, fm = pm4py.read_pnml("input_data/running-example.pnml")
        pm4py.write_pnml(net, im, fm, "test_output_data/running-example.pnml")
        os.remove("test_output_data/running-example.pnml")

    def test_write_ptml(self):
        process_tree = pm4py.read_ptml("input_data/running-example.ptml")
        pm4py.write_ptml(process_tree, "test_output_data/running-example.ptml")
        os.remove("test_output_data/running-example.ptml")

    def test_write_dfg(self):
        dfg, sa, ea = pm4py.read_dfg("input_data/running-example.dfg")
        pm4py.write_dfg(dfg, sa, ea, "test_output_data/running-example.dfg")
        os.remove("test_output_data/running-example.dfg")

    def test_write_bpmn(self):
        bpmn_graph = pm4py.read_bpmn("input_data/running-example.bpmn")
        pm4py.write_bpmn(bpmn_graph, "test_output_data/running-example.bpmn")
        os.remove("test_output_data/running-example.bpmn")

    def test_rebase(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        df = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        dataframe = pm4py.rebase(dataframe, activity_key="Activity", case_id="CaseID", timestamp_key="Timestamp", timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)

    def test_parse_process_tree(self):
        tree = pm4py.parse_process_tree("-> ( 'a', X ( 'b', 'c' ), tau )")

    def test_parse_log_string(self):
        elog = pm4py.parse_event_log_string(["A,B,C", "A,B,D"])

    def test_project_eattr(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            lst = pm4py.project_on_event_attribute(log, "org:resource")

    def test_sample_cases_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.sample_cases(log, 2)

    def test_sample_cases_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.sample_cases(dataframe, 2, case_id_key="CaseID")

    def test_sample_events_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.sample_events(log, 2)

    def test_sample_events_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.sample_events(dataframe, 2)

    def test_check_soundness(self):
        net, im, fm = pm4py.read_pnml("input_data/running-example.pnml")
        self.assertTrue(pm4py.check_soundness(net, im, fm))

    def test_check_wfnet(self):
        net, im, fm = pm4py.read_pnml("input_data/running-example.pnml")
        self.assertTrue(pm4py.check_is_workflow_net(net))

    def test_artificial_start_end_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.insert_artificial_start_end(log)

    def test_artificial_start_end_dataframe(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.insert_artificial_start_end(dataframe, activity_key="Activity", timestamp_key="Timestamp", case_id_key="CaseID")

    def test_hof_filter_log(self):
        log = xes_importer.apply("input_data/running-example.xes")
        pm4py.filter_log(log, lambda x: len(x) > 5)

    def test_hof_filter_trace(self):
        log = xes_importer.apply("input_data/running-example.xes")
        pm4py.filter_trace(log[0], lambda x: x["concept:name"] == "decide")

    def test_hof_sort_log(self):
        log = xes_importer.apply("input_data/running-example.xes")
        pm4py.sort_log(log, key=lambda x: x.attributes["concept:name"])

    def test_hof_sort_trace(self):
        log = xes_importer.apply("input_data/running-example.xes")
        pm4py.sort_trace(log[0], key=lambda x: x["concept:name"])

    def test_split_train_test_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.split_train_test(log, train_percentage=0.6)

    def test_split_train_test_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.split_train_test(dataframe, train_percentage=0.6, case_id_key="CaseID")

    def test_get_prefixes_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.get_prefixes_from_log(log, 3)

    def test_get_prefixes_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.get_prefixes_from_log(dataframe, 3, case_id_key="CaseID")

    def test_convert_reachab(self):
        net, im, fm = pm4py.read_pnml("input_data/running-example.pnml")
        ts = pm4py.convert_to_reachability_graph(net, im, fm)

    def test_hw_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.discover_handover_of_work_network(log)

    def test_hw_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.discover_handover_of_work_network(dataframe, resource_key="Resource", case_id_key="CaseID", timestamp_key="Timestamp")

    def test_wt_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.discover_working_together_network(log)

    def test_wt_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.discover_working_together_network(dataframe, resource_key="Resource", case_id_key="CaseID", timestamp_key="Timestamp")

    def test_act_based_res_sim_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.discover_activity_based_resource_similarity(log)

    def test_act_based_res_sim_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.discover_activity_based_resource_similarity(dataframe, activity_key="Activity", resource_key="Resource", case_id_key="CaseID", timestamp_key="Timestamp")

    def test_subcontracting_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.discover_subcontracting_network(log)

    def test_subcontracting_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.discover_subcontracting_network(dataframe, resource_key="Resource", case_id_key="CaseID", timestamp_key="Timestamp")

    def test_roles_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.discover_organizational_roles(log)

    def test_roles_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.discover_organizational_roles(dataframe, activity_key="Activity", resource_key="Resource", case_id_key="CaseID", timestamp_key="Timestamp")

    def test_network_analysis_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.discover_network_analysis(log, "case:concept:name", "case:concept:name", "org:resource", "org:resource", "concept:name")

    def test_network_analysis_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.discover_network_analysis(dataframe, "CaseID", "CaseID", "Resource", "Resource", "Activity", sorting_column="Timestamp", timestamp_column="Timestamp")

    def test_discover_batches_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.discover_batches(log)

    def test_discover_batches_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.discover_batches(dataframe, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp", resource_key="Resource")

    def test_log_skeleton_log_simplified_interface(self):
        for legacy_obj in [True, False]:
            for diagn_df in [True, False]:
                log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
                model = pm4py.discover_log_skeleton(log)
                pm4py.conformance_log_skeleton(log, model, return_diagnostics_dataframe=diagn_df)

    def test_log_skeleton_df_simplified_interface(self):
        for diagn_df in [True, False]:
            dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
            dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe,
                                                                        timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT,
                                                                        timest_columns=["Timestamp"])
            dataframe["CaseID"] = dataframe["CaseID"].astype("string")

            model = pm4py.discover_log_skeleton(dataframe, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")
            pm4py.conformance_log_skeleton(dataframe, model, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp", return_diagnostics_dataframe=diagn_df)

    def test_temporal_profile_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            model = pm4py.discover_temporal_profile(log)
            pm4py.conformance_temporal_profile(log, model)

    def test_temporal_profile_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        model = pm4py.discover_temporal_profile(dataframe, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")
        pm4py.conformance_temporal_profile(dataframe, model, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")

    def test_ocel_get_obj_types(self):
        ocel = pm4py.read_ocel("input_data/ocel/example_log.csv")
        pm4py.ocel_get_object_types(ocel)

    def test_ocel_get_attr_names(self):
        ocel = pm4py.read_ocel("input_data/ocel/example_log.csv")
        pm4py.ocel_get_attribute_names(ocel)

    def test_ocel_flattening(self):
        ocel = pm4py.read_ocel("input_data/ocel/example_log.csv")
        pm4py.ocel_flattening(ocel, "order")
    def test_stats_var_tuples_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.get_variants_as_tuples(dataframe, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")

    def test_stats_cycle_time_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.get_cycle_time(log)

    def test_stats_cycle_time_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.get_cycle_time(dataframe, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")

    def test_stats_case_durations_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.get_all_case_durations(log)

    def test_stats_case_durations_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.get_all_case_durations(dataframe, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")

    def test_stats_case_duration_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.get_case_duration(log, "1")

    def test_stats_case_duration_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.get_case_duration(dataframe, "1", activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")

    def test_stats_act_pos_summary_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.get_activity_position_summary(log, "check ticket")

    def test_stats_act_pos_summary_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.get_activity_position_summary(dataframe, "check ticket", activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")

    def test_filter_act_done_diff_res_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.filter_activity_done_different_resources(log, "check ticket")

    def test_filter_act_done_diff_res_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.filter_activity_done_different_resources(dataframe, "check ticket", activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp", resource_key="Resource")

    def test_filter_four_eyes_principle_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.filter_four_eyes_principle(log, "register request", "check ticket")

    def test_filter_four_eyes_principle_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.filter_four_eyes_principle(dataframe, "register request", "check ticket", activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp", resource_key="Resource")

    def test_filter_rel_occ_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.filter_log_relative_occurrence_event_attribute(log, 0.8, level="cases")

    def test_filter_rel_occ_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.filter_log_relative_occurrence_event_attribute(dataframe, 0.8, attribute_key="Activity", level="cases", case_id_key="CaseID", timestamp_key="Timestamp")

    def test_filter_start_activities_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.filter_start_activities(log, ["register request"])

    def test_filter_start_activities_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.filter_start_activities(dataframe, ["register request"], activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")

    def test_filter_end_activities_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.filter_end_activities(log, ["pay compensation"])

    def test_filter_end_activities_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.filter_end_activities(dataframe, ["pay compensation"], activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")

    def test_filter_eve_attr_values_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.filter_event_attribute_values(log, "concept:name", ["register request", "pay compensation", "reject request"])

    def test_filter_eve_attr_values_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.filter_event_attribute_values(dataframe, "Activity", ["register request", "pay compensation", "reject request"], case_id_key="CaseID")

    def test_filter_trace_attr_values_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.filter_trace_attribute_values(log, "case:creator", ["Fluxicon"])

    def test_filter_variant_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.filter_variants(log, [('register request', 'examine casually', 'check ticket', 'decide', 'reinitiate request', 'examine thoroughly', 'check ticket', 'decide', 'pay compensation')])

    def test_filter_variant_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.filter_variants(dataframe, [('register request', 'examine casually', 'check ticket', 'decide', 'reinitiate request', 'examine thoroughly', 'check ticket', 'decide', 'pay compensation')], activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")

    def test_filter_dfg_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.filter_directly_follows_relation(log, [("register request", "check ticket")])

    def test_filter_dfg_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.filter_directly_follows_relation(dataframe, [("register request", "check ticket")], activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")

    def test_filter_efg_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.filter_eventually_follows_relation(log, [("register request", "check ticket")])

    def test_filter_efg_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.filter_eventually_follows_relation(dataframe, [("register request", "check ticket")], activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")

    def test_filter_time_range_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.filter_time_range(log, "2009-01-01 01:00:00", "2011-01-01 01:00:00")

    def test_filter_time_range_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.filter_time_range(dataframe, "2009-01-01 01:00:00", "2011-01-01 01:00:00", case_id_key="CaseID", timestamp_key="Timestamp")

    def test_filter_between_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.filter_between(log, "check ticket", "decide")

    def test_filter_between_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.filter_between(dataframe, "check ticket", "decide", activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")

    def test_filter_case_size_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.filter_case_size(log, 10, 20)

    def test_filter_case_size_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.filter_case_size(dataframe, 10, 20, case_id_key="CaseID")

    def test_filter_case_performance_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.filter_case_performance(log, 86400, 8640000)

    def test_filter_case_performance_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.filter_case_performance(dataframe, 86400, 8640000, case_id_key="CaseID", timestamp_key="Timestamp")

    def test_filter_activities_rework_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.filter_activities_rework(log, "check ticket")

    def test_filter_act_rework_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.filter_activities_rework(dataframe, "check ticket", activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")

    def test_filter_paths_perf_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.filter_paths_performance(log, ("register request", "check ticket"), 86400, 864000)

    def test_filter_paths_perf_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.filter_paths_performance(dataframe, ("register request", "check ticket"), 86400, 864000, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")

    def test_filter_vars_top_k_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.filter_variants_top_k(log, 1)

    def test_filter_vars_top_k_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.filter_variants_top_k(dataframe, 1, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")

    def test_filter_vars_coverage(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.filter_variants_by_coverage_percentage(log, 0.1)

    def test_filter_vars_coverage(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.filter_variants_by_coverage_percentage(dataframe, 0.1, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")

    def test_filter_prefixes_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.filter_prefixes(log, "check ticket")

    def test_filter_prefixes_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.filter_prefixes(dataframe, "check ticket", activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")

    def test_filter_suffixes_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.filter_suffixes(log, "check ticket")

    def test_filter_suffixes_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.filter_suffixes(dataframe, "check ticket", activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")

    def test_discover_perf_dfg_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.discover_performance_dfg(log)

    def test_discover_perf_dfg_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.discover_performance_dfg(dataframe, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")

    def test_discover_footprints_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.discover_footprints(log)

    def test_discover_ts_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.discover_transition_system(log)

    def test_discover_ts_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.discover_transition_system(dataframe, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")

    def test_discover_pref_tree_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.discover_prefix_tree(log)

    def test_discover_pref_tree_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.discover_prefix_tree(dataframe, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")

    def test_discover_ocpn(self):
        ocel = pm4py.read_ocel("input_data/ocel/example_log.csv")
        pm4py.discover_oc_petri_net(ocel)

    def test_conformance_alignments_pn_log_simplified_interface(self):
        for legacy_obj in [True, False]:
            for diagn_df in [True, False]:
                log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
                net, im, fm = pm4py.discover_petri_net_inductive(log)
                pm4py.conformance_diagnostics_alignments(log, net, im, fm, return_diagnostics_dataframe=diagn_df)

    def test_conformance_alignments_pn_df_simplified_interface(self):
        for diagn_df in [True, False]:
            dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
            dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe,
                                                                        timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT,
                                                                        timest_columns=["Timestamp"])
            dataframe["CaseID"] = dataframe["CaseID"].astype("string")

            net, im, fm = pm4py.discover_petri_net_inductive(dataframe, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")
            pm4py.conformance_diagnostics_alignments(dataframe, net, im, fm, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp", return_diagnostics_dataframe=diagn_df)

    def test_conformance_diagnostics_fp_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            tree = pm4py.discover_process_tree_inductive(log)
            pm4py.conformance_diagnostics_footprints(log, tree)

    def test_fitness_fp_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            tree = pm4py.discover_process_tree_inductive(log)
            pm4py.fitness_footprints(log, tree)

    def test_precision_fp_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            tree = pm4py.discover_process_tree_inductive(log)
            pm4py.precision_footprints(log, tree)

    def test_maximal_decomposition(self):
        net, im, fm = pm4py.read_pnml("input_data/running-example.pnml")
        pm4py.maximal_decomposition(net, im, fm)

    def test_fea_ext_log(self):
        for legacy_obj in [True, False]:
            log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
            pm4py.extract_features_dataframe(log)

    def test_fea_ext_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        pm4py.extract_features_dataframe(dataframe, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp", resource_key="Resource")

    def test_new_alpha_miner_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")
        pm4py.discover_petri_net_alpha(dataframe, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")

    def test_new_heu_miner_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")
        pm4py.discover_petri_net_heuristics(dataframe, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")

    def test_new_dfg_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")
        pm4py.discover_dfg(dataframe, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")

    def test_new_perf_dfg_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")
        pm4py.discover_performance_dfg(dataframe, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")

    def test_new_tbr_df_simpl_interface(self):
        for ret_df in [True, False]:
            dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
            dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe,
                                                                        timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT,
                                                                        timest_columns=["Timestamp"])
            dataframe["CaseID"] = dataframe["CaseID"].astype("string")
            net, im, fm = pm4py.discover_petri_net_inductive(dataframe, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")
            pm4py.conformance_diagnostics_token_based_replay(dataframe, net, im, fm, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp", return_diagnostics_dataframe=ret_df)

    def test_new_tbr_fitness_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")
        net, im, fm = pm4py.discover_petri_net_inductive(dataframe, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")
        pm4py.fitness_token_based_replay(dataframe, net, im, fm, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")

    def test_new_tbr_precision_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")
        net, im, fm = pm4py.discover_petri_net_inductive(dataframe, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")
        pm4py.precision_token_based_replay(dataframe, net, im, fm, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")

    def test_new_align_df_simpl_interface(self):
        for diagn_df in [True, False]:
            dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
            dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe,
                                                                        timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT,
                                                                        timest_columns=["Timestamp"])
            dataframe["CaseID"] = dataframe["CaseID"].astype("string")
            net, im, fm = pm4py.discover_petri_net_inductive(dataframe, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")
            pm4py.conformance_diagnostics_alignments(dataframe, net, im, fm, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp", return_diagnostics_dataframe=diagn_df)

    def test_new_align_fitness_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")
        net, im, fm = pm4py.discover_petri_net_inductive(dataframe, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")
        pm4py.fitness_alignments(dataframe, net, im, fm, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")

    def test_new_align_precision_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")
        net, im, fm = pm4py.discover_petri_net_inductive(dataframe, case_id_key="CaseID", activity_key="Activity",
                                                         timestamp_key="Timestamp")
        pm4py.precision_alignments(dataframe, net, im, fm, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")

    def test_vis_case_duration_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")

        if importlib.util.find_spec("matplotlib"):
            target = os.path.join("test_output_data", "case_duration.svg")
            pm4py.save_vis_case_duration_graph(dataframe, target, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")
            os.remove(target)

    def test_vis_ev_distr_graph_df(self):
        dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
        dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
        dataframe["CaseID"] = dataframe["CaseID"].astype("string")
        target = os.path.join("test_output_data", "ev_distr_graph.svg")

        if importlib.util.find_spec("matplotlib"):
            pm4py.save_vis_events_distribution_graph(dataframe, target, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")
            os.remove(target)

    def test_ocel_object_graph(self):
        ocel = pm4py.read_ocel("input_data/ocel/example_log.jsonocel")
        ev_graph = pm4py.discover_objects_graph(ocel, graph_type="object_interaction")
        ev_graph = pm4py.discover_objects_graph(ocel, graph_type="object_descendants")
        ev_graph = pm4py.discover_objects_graph(ocel, graph_type="object_inheritance")
        ev_graph = pm4py.discover_objects_graph(ocel, graph_type="object_cobirth")
        ev_graph = pm4py.discover_objects_graph(ocel, graph_type="object_codeath")

    def test_ocel_temporal_summary(self):
        ocel = pm4py.read_ocel("input_data/ocel/example_log.jsonocel")
        temp_summary = pm4py.ocel_temporal_summary(ocel)

    def test_ocel_objects_summary(self):
        ocel = pm4py.read_ocel("input_data/ocel/example_log.jsonocel")
        objects_summary = pm4py.ocel_objects_summary(ocel)

    def test_ocel_filtering_ev_ids(self):
        ocel = pm4py.read_ocel("input_data/ocel/example_log.jsonocel")
        filtered_ocel = pm4py.filter_ocel_events(ocel, ["e1"])

    def test_ocel_filtering_obj_ids(self):
        ocel = pm4py.read_ocel("input_data/ocel/example_log.jsonocel")
        filtered_ocel = pm4py.filter_ocel_objects(ocel, ["o1"], level=1)
        filtered_ocel = pm4py.filter_ocel_objects(ocel, ["o1"], level=2)

    def test_ocel_filtering_obj_types(self):
        ocel = pm4py.read_ocel("input_data/ocel/example_log.jsonocel")
        filtered_ocel = pm4py.filter_ocel_object_types(ocel, ["order"])

    def test_ocel_filtering_cc(self):
        ocel = pm4py.read_ocel("input_data/ocel/example_log.jsonocel")
        filtered_ocel = pm4py.filter_ocel_cc_object(ocel, "o1")

    def test_ocel_drop_duplicates(self):
        ocel = pm4py.read_ocel("input_data/ocel/example_log.jsonocel")
        filtered_ocel = pm4py.ocel_drop_duplicates(ocel)

    def test_ocel_add_index_based_timedelta(self):
        ocel = pm4py.read_ocel("input_data/ocel/example_log.jsonocel")
        filtered_ocel = pm4py.ocel_add_index_based_timedelta(ocel)

    def test_ocel2_xml(self):
        ocel = pm4py.read_ocel2("input_data/ocel/ocel20_example.xmlocel")
        pm4py.write_ocel2(ocel, "test_output_data/ocel20_example.xmlocel")
        os.remove("test_output_data/ocel20_example.xmlocel")

    def test_ocel2_sqlite(self):
        ocel = pm4py.read_ocel2("input_data/ocel/ocel20_example.sqlite")
        pm4py.write_ocel2(ocel, "test_output_data/ocel20_example.sqlite")
        os.remove("test_output_data/ocel20_example.sqlite")


if __name__ == "__main__":
    unittest.main()