Spaces:
Sleeping
Sleeping
File size: 65,810 Bytes
8097001 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 |
import importlib.util
import os
import unittest
import pm4py
from pm4py.objects.bpmn.obj import BPMN
from pm4py.objects.petri_net.obj import PetriNet
from pm4py.objects.process_tree.obj import ProcessTree
from pm4py.util import constants, pandas_utils
from pm4py.objects.log.util import dataframe_utils
from pm4py.objects.log.importer.xes import importer as xes_importer
class SimplifiedInterfaceTest(unittest.TestCase):
def test_csv(self):
df = pandas_utils.read_csv("input_data/running-example.csv")
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["time:timestamp"])
df["case:concept:name"] = df["case:concept:name"].astype("string")
log2 = pm4py.convert_to_event_log(df)
stream1 = pm4py.convert_to_event_stream(log2)
df2 = pm4py.convert_to_dataframe(log2)
pm4py.write_xes(log2, "test_output_data/log.xes")
os.remove("test_output_data/log.xes")
def test_alpha_miner(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
net, im, fm = pm4py.discover_petri_net_alpha(log)
def test_alpha_miner_plus(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
net, im, fm = pm4py.discover_petri_net_alpha_plus(log)
def test_inductive_miner(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
net, im, fm = pm4py.discover_petri_net_inductive(log)
def test_inductive_miner_noise(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
net, im, fm = pm4py.discover_petri_net_inductive(log, noise_threshold=0.5)
def test_heuristics_miner(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
net, im, fm = pm4py.discover_petri_net_heuristics(log)
def test_inductive_miner_tree(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
tree = pm4py.discover_process_tree_inductive(log)
tree = pm4py.discover_process_tree_inductive(log, noise_threshold=0.2)
def test_heuristics_miner_heu_net(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
heu_net = pm4py.discover_heuristics_net(log)
def test_dfg(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
dfg, sa, ea = pm4py.discover_directly_follows_graph(log)
def test_read_petri(self):
net, im, fm = pm4py.read_pnml("input_data/running-example.pnml")
def test_read_tree(self):
tree = pm4py.read_ptml("input_data/running-example.ptml")
def test_read_dfg(self):
dfg, sa, ea = pm4py.read_dfg("input_data/running-example.dfg")
def test_alignments_simpl_interface(self):
for legacy_obj in [True, False]:
for diagn_df in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
net, im, fm = pm4py.discover_petri_net_inductive(log)
aligned_traces = pm4py.conformance_diagnostics_alignments(log, net, im, fm, return_diagnostics_dataframe=diagn_df)
def test_tbr_simpl_interface(self):
for legacy_obj in [True, False]:
for diagn_df in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
net, im, fm = pm4py.discover_petri_net_inductive(log)
replayed_traces = pm4py.conformance_diagnostics_token_based_replay(log, net, im, fm, return_diagnostics_dataframe=diagn_df)
def test_fitness_alignments(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
net, im, fm = pm4py.discover_petri_net_inductive(log)
fitness_ali = pm4py.fitness_alignments(log, net, im, fm)
def test_fitness_tbr(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
net, im, fm = pm4py.discover_petri_net_inductive(log)
fitness_tbr = pm4py.fitness_token_based_replay(log, net, im, fm)
def test_precision_alignments(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
net, im, fm = pm4py.discover_petri_net_inductive(log)
precision_ali = pm4py.precision_alignments(log, net, im, fm)
def test_precision_tbr(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
net, im, fm = pm4py.discover_petri_net_inductive(log)
precision_tbr = pm4py.precision_token_based_replay(log, net, im, fm)
def test_convert_to_tree_from_petri(self):
net, im, fm = pm4py.read_pnml("input_data/running-example.pnml")
tree = pm4py.convert_to_process_tree(net, im, fm)
self.assertTrue(isinstance(tree, ProcessTree))
def test_convert_to_tree_from_bpmn(self):
bpmn = pm4py.read_bpmn("input_data/running-example.bpmn")
tree = pm4py.convert_to_process_tree(bpmn)
self.assertTrue(isinstance(tree, ProcessTree))
def test_convert_to_net_from_tree(self):
tree = pm4py.read_ptml("input_data/running-example.ptml")
net, im, fm = pm4py.convert_to_petri_net(tree)
self.assertTrue(isinstance(net, PetriNet))
def test_convert_to_net_from_bpmn(self):
bpmn = pm4py.read_bpmn("input_data/running-example.bpmn")
net, im, fm = pm4py.convert_to_petri_net(bpmn)
self.assertTrue(isinstance(net, PetriNet))
def test_convert_to_net_from_dfg(self):
dfg, sa, ea = pm4py.read_dfg("input_data/running-example.dfg")
net, im, fm = pm4py.convert_to_petri_net(dfg, sa, ea)
self.assertTrue(isinstance(net, PetriNet))
def test_convert_to_net_from_heu(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
heu_net = pm4py.discover_heuristics_net(log)
net, im, fm = pm4py.convert_to_petri_net(heu_net)
self.assertTrue(isinstance(net, PetriNet))
def test_convert_to_bpmn_from_tree(self):
tree = pm4py.read_ptml("input_data/running-example.ptml")
bpmn = pm4py.convert_to_bpmn(tree)
self.assertTrue(isinstance(bpmn, BPMN))
def test_statistics_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.get_start_activities(log)
pm4py.get_end_activities(log)
pm4py.get_event_attributes(log)
pm4py.get_trace_attributes(log)
pm4py.get_event_attribute_values(log, "org:resource")
pm4py.get_variants_as_tuples(log)
def test_statistics_df(self):
df = pandas_utils.read_csv("input_data/running-example-transformed.csv")
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
df["CaseID"] = df["CaseID"].astype("string")
pm4py.get_start_activities(df, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")
pm4py.get_end_activities(df, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")
pm4py.get_event_attributes(df)
pm4py.get_event_attribute_values(df, "Resource", case_id_key="CaseID")
pm4py.get_variants_as_tuples(df, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")
def test_playout(self):
net, im, fm = pm4py.read_pnml("input_data/running-example.pnml")
pm4py.play_out(net, im, fm)
def test_generator(self):
pm4py.generate_process_tree()
def test_mark_em_equation(self):
for legacy_obj in [True, False]:
log = xes_importer.apply("input_data/running-example.xes")
net, im, fm = pm4py.read_pnml("input_data/running-example.pnml")
sync_net, sync_im, sync_fm = pm4py.construct_synchronous_product_net(log[0], net, im, fm)
m_h = pm4py.solve_marking_equation(sync_net, sync_im, sync_fm)
em_h = pm4py.solve_extended_marking_equation(log[0], sync_net, sync_im, sync_fm)
def test_new_statistics_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.get_trace_attribute_values(log, "case:creator")
pm4py.discover_eventually_follows_graph(log)
pm4py.get_case_arrival_average(log)
def test_new_statistics_df(self):
df = pandas_utils.read_csv("input_data/running-example-transformed.csv")
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT,
timest_columns=["Timestamp"])
df["CaseID"] = df["CaseID"].astype("string")
pm4py.discover_eventually_follows_graph(df, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")
pm4py.get_case_arrival_average(df, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")
def test_serialization_log(self):
if importlib.util.find_spec("pyarrow"):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
ser = pm4py.serialize(log)
log2 = pm4py.deserialize(ser)
def test_serialization_dataframe(self):
if importlib.util.find_spec("pyarrow"):
df = pandas_utils.read_csv("input_data/running-example.csv")
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["time:timestamp"])
ser = pm4py.serialize(df)
df2 = pm4py.deserialize(ser)
def test_serialization_petri_net(self):
net, im, fm = pm4py.read_pnml("input_data/running-example.pnml")
ser = pm4py.serialize(net, im, fm)
net2, im2, fm2 = pm4py.deserialize(ser)
def test_serialization_process_tree(self):
tree = pm4py.read_ptml("input_data/running-example.ptml")
ser = pm4py.serialize(tree)
tree2 = pm4py.deserialize(ser)
def test_serialization_bpmn(self):
bpmn = pm4py.read_bpmn("input_data/running-example.bpmn")
ser = pm4py.serialize(bpmn)
bpmn2 = pm4py.deserialize(ser)
def test_serialization_dfg(self):
dfg, sa, ea = pm4py.read_dfg("input_data/running-example.dfg")
ser = pm4py.serialize(dfg, sa, ea)
dfg2, sa2, ea2 = pm4py.deserialize(ser)
def test_minimum_self_distance(self):
import pm4py
for legacy_obj in [True, False]:
log = pm4py.read_xes(os.path.join("input_data", "running-example.xes"), return_legacy_log_object=legacy_obj)
msd = pm4py.get_minimum_self_distances(log)
def test_minimum_self_distance_2(self):
import pm4py
for legacy_obj in [True, False]:
log = pm4py.read_xes(os.path.join("input_data", "running-example.xes"), return_legacy_log_object=legacy_obj)
msd = pm4py.get_minimum_self_distance_witnesses(log)
def test_marking_equation_net(self):
import pm4py
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
net, im, fm = pm4py.discover_petri_net_inductive(log)
pm4py.solve_marking_equation(net, im, fm)
def test_marking_equation_sync_net(self):
import pm4py
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
net, im, fm = pm4py.discover_petri_net_inductive(log)
sync_net, sync_im, sync_fm = pm4py.construct_synchronous_product_net(log[0], net, im, fm)
res = pm4py.solve_marking_equation(sync_net, sync_im, sync_fm)
self.assertIsNotNone(res)
self.assertEqual(res, 11)
def test_ext_marking_equation_sync_net(self):
import pm4py
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
net, im, fm = pm4py.discover_petri_net_inductive(log)
sync_net, sync_im, sync_fm = pm4py.construct_synchronous_product_net(log[0], net, im, fm)
res = pm4py.solve_extended_marking_equation(log[0], sync_net, sync_im, sync_fm)
self.assertIsNotNone(res)
def test_alignments_tree_simpl_interface(self):
import pm4py
for legacy_obj in [True, False]:
for diagn_df in [True, False]:
log = pm4py.read_xes(os.path.join("input_data", "running-example.xes"), return_legacy_log_object=legacy_obj)
tree = pm4py.read_ptml(os.path.join("input_data", "running-example.ptml"))
res = pm4py.conformance_diagnostics_alignments(log, tree, return_diagnostics_dataframe=diagn_df)
self.assertIsNotNone(res)
def test_alignments_dfg_simpl_interface(self):
import pm4py
for legacy_obj in [True, False]:
for diagn_df in [True, False]:
log = pm4py.read_xes(os.path.join("input_data", "running-example.xes"), return_legacy_log_object=legacy_obj)
dfg, sa, ea = pm4py.read_dfg(os.path.join("input_data", "running-example.dfg"))
res = pm4py.conformance_diagnostics_alignments(log, dfg, sa, ea, return_diagnostics_dataframe=diagn_df)
self.assertIsNotNone(res)
def test_alignments_bpmn_simpl_interface(self):
import pm4py
for legacy_obj in [True, False]:
for diagn_df in [True, False]:
log = pm4py.read_xes(os.path.join("input_data", "running-example.xes"), return_legacy_log_object=legacy_obj)
bpmn_graph = pm4py.read_bpmn(os.path.join("input_data", "running-example.bpmn"))
res = pm4py.conformance_diagnostics_alignments(log, bpmn_graph, return_diagnostics_dataframe=diagn_df)
self.assertIsNotNone(res)
def test_discovery_inductive_bpmn(self):
import pm4py
for legacy_obj in [True, False]:
log = pm4py.read_xes(os.path.join("input_data", "running-example.xes"), return_legacy_log_object=legacy_obj)
bpmn_graph = pm4py.discover_bpmn_inductive(log)
self.assertIsNotNone(bpmn_graph)
def test_generation(self):
import pm4py
tree = pm4py.generate_process_tree()
self.assertIsNotNone(tree)
def test_play_out_tree(self):
import pm4py
tree = pm4py.read_ptml(os.path.join("input_data", "running-example.ptml"))
log = pm4py.play_out(tree)
def test_play_out_net(self):
import pm4py
net, im, fm = pm4py.read_pnml(os.path.join("input_data", "running-example.pnml"))
log = pm4py.play_out(net, im, fm)
def test_msd(self):
import pm4py
for legacy_obj in [True, False]:
log = pm4py.read_xes(os.path.join("input_data", "running-example.xes"), return_legacy_log_object=legacy_obj)
res1 = pm4py.get_minimum_self_distance_witnesses(log)
res2 = pm4py.get_minimum_self_distances(log)
self.assertIsNotNone(res1)
self.assertIsNotNone(res2)
def test_case_arrival(self):
import pm4py
for legacy_obj in [True, False]:
log = pm4py.read_xes(os.path.join("input_data", "running-example.xes"), return_legacy_log_object=legacy_obj)
avg = pm4py.get_case_arrival_average(log)
self.assertIsNotNone(avg)
def test_efg(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.discover_eventually_follows_graph(log)
def test_write_pnml(self):
net, im, fm = pm4py.read_pnml("input_data/running-example.pnml")
pm4py.write_pnml(net, im, fm, "test_output_data/running-example.pnml")
os.remove("test_output_data/running-example.pnml")
def test_write_ptml(self):
process_tree = pm4py.read_ptml("input_data/running-example.ptml")
pm4py.write_ptml(process_tree, "test_output_data/running-example.ptml")
os.remove("test_output_data/running-example.ptml")
def test_write_dfg(self):
dfg, sa, ea = pm4py.read_dfg("input_data/running-example.dfg")
pm4py.write_dfg(dfg, sa, ea, "test_output_data/running-example.dfg")
os.remove("test_output_data/running-example.dfg")
def test_write_bpmn(self):
bpmn_graph = pm4py.read_bpmn("input_data/running-example.bpmn")
pm4py.write_bpmn(bpmn_graph, "test_output_data/running-example.bpmn")
os.remove("test_output_data/running-example.bpmn")
def test_rebase(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
df = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
dataframe = pm4py.rebase(dataframe, activity_key="Activity", case_id="CaseID", timestamp_key="Timestamp", timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
def test_parse_process_tree(self):
tree = pm4py.parse_process_tree("-> ( 'a', X ( 'b', 'c' ), tau )")
def test_parse_log_string(self):
elog = pm4py.parse_event_log_string(["A,B,C", "A,B,D"])
def test_project_eattr(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
lst = pm4py.project_on_event_attribute(log, "org:resource")
def test_sample_cases_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.sample_cases(log, 2)
def test_sample_cases_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.sample_cases(dataframe, 2, case_id_key="CaseID")
def test_sample_events_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.sample_events(log, 2)
def test_sample_events_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.sample_events(dataframe, 2)
def test_check_soundness(self):
net, im, fm = pm4py.read_pnml("input_data/running-example.pnml")
self.assertTrue(pm4py.check_soundness(net, im, fm))
def test_check_wfnet(self):
net, im, fm = pm4py.read_pnml("input_data/running-example.pnml")
self.assertTrue(pm4py.check_is_workflow_net(net))
def test_artificial_start_end_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.insert_artificial_start_end(log)
def test_artificial_start_end_dataframe(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.insert_artificial_start_end(dataframe, activity_key="Activity", timestamp_key="Timestamp", case_id_key="CaseID")
def test_hof_filter_log(self):
log = xes_importer.apply("input_data/running-example.xes")
pm4py.filter_log(log, lambda x: len(x) > 5)
def test_hof_filter_trace(self):
log = xes_importer.apply("input_data/running-example.xes")
pm4py.filter_trace(log[0], lambda x: x["concept:name"] == "decide")
def test_hof_sort_log(self):
log = xes_importer.apply("input_data/running-example.xes")
pm4py.sort_log(log, key=lambda x: x.attributes["concept:name"])
def test_hof_sort_trace(self):
log = xes_importer.apply("input_data/running-example.xes")
pm4py.sort_trace(log[0], key=lambda x: x["concept:name"])
def test_split_train_test_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.split_train_test(log, train_percentage=0.6)
def test_split_train_test_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.split_train_test(dataframe, train_percentage=0.6, case_id_key="CaseID")
def test_get_prefixes_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.get_prefixes_from_log(log, 3)
def test_get_prefixes_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.get_prefixes_from_log(dataframe, 3, case_id_key="CaseID")
def test_convert_reachab(self):
net, im, fm = pm4py.read_pnml("input_data/running-example.pnml")
ts = pm4py.convert_to_reachability_graph(net, im, fm)
def test_hw_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.discover_handover_of_work_network(log)
def test_hw_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.discover_handover_of_work_network(dataframe, resource_key="Resource", case_id_key="CaseID", timestamp_key="Timestamp")
def test_wt_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.discover_working_together_network(log)
def test_wt_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.discover_working_together_network(dataframe, resource_key="Resource", case_id_key="CaseID", timestamp_key="Timestamp")
def test_act_based_res_sim_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.discover_activity_based_resource_similarity(log)
def test_act_based_res_sim_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.discover_activity_based_resource_similarity(dataframe, activity_key="Activity", resource_key="Resource", case_id_key="CaseID", timestamp_key="Timestamp")
def test_subcontracting_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.discover_subcontracting_network(log)
def test_subcontracting_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.discover_subcontracting_network(dataframe, resource_key="Resource", case_id_key="CaseID", timestamp_key="Timestamp")
def test_roles_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.discover_organizational_roles(log)
def test_roles_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.discover_organizational_roles(dataframe, activity_key="Activity", resource_key="Resource", case_id_key="CaseID", timestamp_key="Timestamp")
def test_network_analysis_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.discover_network_analysis(log, "case:concept:name", "case:concept:name", "org:resource", "org:resource", "concept:name")
def test_network_analysis_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.discover_network_analysis(dataframe, "CaseID", "CaseID", "Resource", "Resource", "Activity", sorting_column="Timestamp", timestamp_column="Timestamp")
def test_discover_batches_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.discover_batches(log)
def test_discover_batches_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.discover_batches(dataframe, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp", resource_key="Resource")
def test_log_skeleton_log_simplified_interface(self):
for legacy_obj in [True, False]:
for diagn_df in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
model = pm4py.discover_log_skeleton(log)
pm4py.conformance_log_skeleton(log, model, return_diagnostics_dataframe=diagn_df)
def test_log_skeleton_df_simplified_interface(self):
for diagn_df in [True, False]:
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe,
timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT,
timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
model = pm4py.discover_log_skeleton(dataframe, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")
pm4py.conformance_log_skeleton(dataframe, model, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp", return_diagnostics_dataframe=diagn_df)
def test_temporal_profile_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
model = pm4py.discover_temporal_profile(log)
pm4py.conformance_temporal_profile(log, model)
def test_temporal_profile_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
model = pm4py.discover_temporal_profile(dataframe, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")
pm4py.conformance_temporal_profile(dataframe, model, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")
def test_ocel_get_obj_types(self):
ocel = pm4py.read_ocel("input_data/ocel/example_log.csv")
pm4py.ocel_get_object_types(ocel)
def test_ocel_get_attr_names(self):
ocel = pm4py.read_ocel("input_data/ocel/example_log.csv")
pm4py.ocel_get_attribute_names(ocel)
def test_ocel_flattening(self):
ocel = pm4py.read_ocel("input_data/ocel/example_log.csv")
pm4py.ocel_flattening(ocel, "order")
def test_stats_var_tuples_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.get_variants_as_tuples(dataframe, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")
def test_stats_cycle_time_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.get_cycle_time(log)
def test_stats_cycle_time_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.get_cycle_time(dataframe, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")
def test_stats_case_durations_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.get_all_case_durations(log)
def test_stats_case_durations_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.get_all_case_durations(dataframe, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")
def test_stats_case_duration_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.get_case_duration(log, "1")
def test_stats_case_duration_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.get_case_duration(dataframe, "1", activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")
def test_stats_act_pos_summary_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.get_activity_position_summary(log, "check ticket")
def test_stats_act_pos_summary_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.get_activity_position_summary(dataframe, "check ticket", activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")
def test_filter_act_done_diff_res_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.filter_activity_done_different_resources(log, "check ticket")
def test_filter_act_done_diff_res_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.filter_activity_done_different_resources(dataframe, "check ticket", activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp", resource_key="Resource")
def test_filter_four_eyes_principle_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.filter_four_eyes_principle(log, "register request", "check ticket")
def test_filter_four_eyes_principle_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.filter_four_eyes_principle(dataframe, "register request", "check ticket", activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp", resource_key="Resource")
def test_filter_rel_occ_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.filter_log_relative_occurrence_event_attribute(log, 0.8, level="cases")
def test_filter_rel_occ_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.filter_log_relative_occurrence_event_attribute(dataframe, 0.8, attribute_key="Activity", level="cases", case_id_key="CaseID", timestamp_key="Timestamp")
def test_filter_start_activities_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.filter_start_activities(log, ["register request"])
def test_filter_start_activities_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.filter_start_activities(dataframe, ["register request"], activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")
def test_filter_end_activities_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.filter_end_activities(log, ["pay compensation"])
def test_filter_end_activities_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.filter_end_activities(dataframe, ["pay compensation"], activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")
def test_filter_eve_attr_values_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.filter_event_attribute_values(log, "concept:name", ["register request", "pay compensation", "reject request"])
def test_filter_eve_attr_values_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.filter_event_attribute_values(dataframe, "Activity", ["register request", "pay compensation", "reject request"], case_id_key="CaseID")
def test_filter_trace_attr_values_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.filter_trace_attribute_values(log, "case:creator", ["Fluxicon"])
def test_filter_variant_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.filter_variants(log, [('register request', 'examine casually', 'check ticket', 'decide', 'reinitiate request', 'examine thoroughly', 'check ticket', 'decide', 'pay compensation')])
def test_filter_variant_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.filter_variants(dataframe, [('register request', 'examine casually', 'check ticket', 'decide', 'reinitiate request', 'examine thoroughly', 'check ticket', 'decide', 'pay compensation')], activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")
def test_filter_dfg_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.filter_directly_follows_relation(log, [("register request", "check ticket")])
def test_filter_dfg_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.filter_directly_follows_relation(dataframe, [("register request", "check ticket")], activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")
def test_filter_efg_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.filter_eventually_follows_relation(log, [("register request", "check ticket")])
def test_filter_efg_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.filter_eventually_follows_relation(dataframe, [("register request", "check ticket")], activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")
def test_filter_time_range_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.filter_time_range(log, "2009-01-01 01:00:00", "2011-01-01 01:00:00")
def test_filter_time_range_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.filter_time_range(dataframe, "2009-01-01 01:00:00", "2011-01-01 01:00:00", case_id_key="CaseID", timestamp_key="Timestamp")
def test_filter_between_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.filter_between(log, "check ticket", "decide")
def test_filter_between_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.filter_between(dataframe, "check ticket", "decide", activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")
def test_filter_case_size_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.filter_case_size(log, 10, 20)
def test_filter_case_size_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.filter_case_size(dataframe, 10, 20, case_id_key="CaseID")
def test_filter_case_performance_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.filter_case_performance(log, 86400, 8640000)
def test_filter_case_performance_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.filter_case_performance(dataframe, 86400, 8640000, case_id_key="CaseID", timestamp_key="Timestamp")
def test_filter_activities_rework_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.filter_activities_rework(log, "check ticket")
def test_filter_act_rework_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.filter_activities_rework(dataframe, "check ticket", activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")
def test_filter_paths_perf_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.filter_paths_performance(log, ("register request", "check ticket"), 86400, 864000)
def test_filter_paths_perf_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.filter_paths_performance(dataframe, ("register request", "check ticket"), 86400, 864000, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")
def test_filter_vars_top_k_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.filter_variants_top_k(log, 1)
def test_filter_vars_top_k_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.filter_variants_top_k(dataframe, 1, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")
def test_filter_vars_coverage(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.filter_variants_by_coverage_percentage(log, 0.1)
def test_filter_vars_coverage(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.filter_variants_by_coverage_percentage(dataframe, 0.1, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")
def test_filter_prefixes_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.filter_prefixes(log, "check ticket")
def test_filter_prefixes_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.filter_prefixes(dataframe, "check ticket", activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")
def test_filter_suffixes_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.filter_suffixes(log, "check ticket")
def test_filter_suffixes_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.filter_suffixes(dataframe, "check ticket", activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")
def test_discover_perf_dfg_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.discover_performance_dfg(log)
def test_discover_perf_dfg_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.discover_performance_dfg(dataframe, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")
def test_discover_footprints_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.discover_footprints(log)
def test_discover_ts_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.discover_transition_system(log)
def test_discover_ts_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.discover_transition_system(dataframe, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")
def test_discover_pref_tree_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.discover_prefix_tree(log)
def test_discover_pref_tree_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.discover_prefix_tree(dataframe, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")
def test_discover_ocpn(self):
ocel = pm4py.read_ocel("input_data/ocel/example_log.csv")
pm4py.discover_oc_petri_net(ocel)
def test_conformance_alignments_pn_log_simplified_interface(self):
for legacy_obj in [True, False]:
for diagn_df in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
net, im, fm = pm4py.discover_petri_net_inductive(log)
pm4py.conformance_diagnostics_alignments(log, net, im, fm, return_diagnostics_dataframe=diagn_df)
def test_conformance_alignments_pn_df_simplified_interface(self):
for diagn_df in [True, False]:
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe,
timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT,
timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
net, im, fm = pm4py.discover_petri_net_inductive(dataframe, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")
pm4py.conformance_diagnostics_alignments(dataframe, net, im, fm, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp", return_diagnostics_dataframe=diagn_df)
def test_conformance_diagnostics_fp_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
tree = pm4py.discover_process_tree_inductive(log)
pm4py.conformance_diagnostics_footprints(log, tree)
def test_fitness_fp_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
tree = pm4py.discover_process_tree_inductive(log)
pm4py.fitness_footprints(log, tree)
def test_precision_fp_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
tree = pm4py.discover_process_tree_inductive(log)
pm4py.precision_footprints(log, tree)
def test_maximal_decomposition(self):
net, im, fm = pm4py.read_pnml("input_data/running-example.pnml")
pm4py.maximal_decomposition(net, im, fm)
def test_fea_ext_log(self):
for legacy_obj in [True, False]:
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj)
pm4py.extract_features_dataframe(log)
def test_fea_ext_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.extract_features_dataframe(dataframe, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp", resource_key="Resource")
def test_new_alpha_miner_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.discover_petri_net_alpha(dataframe, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")
def test_new_heu_miner_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.discover_petri_net_heuristics(dataframe, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")
def test_new_dfg_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.discover_dfg(dataframe, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")
def test_new_perf_dfg_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
pm4py.discover_performance_dfg(dataframe, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")
def test_new_tbr_df_simpl_interface(self):
for ret_df in [True, False]:
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe,
timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT,
timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
net, im, fm = pm4py.discover_petri_net_inductive(dataframe, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")
pm4py.conformance_diagnostics_token_based_replay(dataframe, net, im, fm, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp", return_diagnostics_dataframe=ret_df)
def test_new_tbr_fitness_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
net, im, fm = pm4py.discover_petri_net_inductive(dataframe, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")
pm4py.fitness_token_based_replay(dataframe, net, im, fm, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")
def test_new_tbr_precision_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
net, im, fm = pm4py.discover_petri_net_inductive(dataframe, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")
pm4py.precision_token_based_replay(dataframe, net, im, fm, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")
def test_new_align_df_simpl_interface(self):
for diagn_df in [True, False]:
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe,
timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT,
timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
net, im, fm = pm4py.discover_petri_net_inductive(dataframe, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")
pm4py.conformance_diagnostics_alignments(dataframe, net, im, fm, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp", return_diagnostics_dataframe=diagn_df)
def test_new_align_fitness_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
net, im, fm = pm4py.discover_petri_net_inductive(dataframe, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")
pm4py.fitness_alignments(dataframe, net, im, fm, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")
def test_new_align_precision_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
net, im, fm = pm4py.discover_petri_net_inductive(dataframe, case_id_key="CaseID", activity_key="Activity",
timestamp_key="Timestamp")
pm4py.precision_alignments(dataframe, net, im, fm, case_id_key="CaseID", activity_key="Activity", timestamp_key="Timestamp")
def test_vis_case_duration_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
if importlib.util.find_spec("matplotlib"):
target = os.path.join("test_output_data", "case_duration.svg")
pm4py.save_vis_case_duration_graph(dataframe, target, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")
os.remove(target)
def test_vis_ev_distr_graph_df(self):
dataframe = pandas_utils.read_csv("input_data/running-example-transformed.csv")
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["Timestamp"])
dataframe["CaseID"] = dataframe["CaseID"].astype("string")
target = os.path.join("test_output_data", "ev_distr_graph.svg")
if importlib.util.find_spec("matplotlib"):
pm4py.save_vis_events_distribution_graph(dataframe, target, activity_key="Activity", case_id_key="CaseID", timestamp_key="Timestamp")
os.remove(target)
def test_ocel_object_graph(self):
ocel = pm4py.read_ocel("input_data/ocel/example_log.jsonocel")
ev_graph = pm4py.discover_objects_graph(ocel, graph_type="object_interaction")
ev_graph = pm4py.discover_objects_graph(ocel, graph_type="object_descendants")
ev_graph = pm4py.discover_objects_graph(ocel, graph_type="object_inheritance")
ev_graph = pm4py.discover_objects_graph(ocel, graph_type="object_cobirth")
ev_graph = pm4py.discover_objects_graph(ocel, graph_type="object_codeath")
def test_ocel_temporal_summary(self):
ocel = pm4py.read_ocel("input_data/ocel/example_log.jsonocel")
temp_summary = pm4py.ocel_temporal_summary(ocel)
def test_ocel_objects_summary(self):
ocel = pm4py.read_ocel("input_data/ocel/example_log.jsonocel")
objects_summary = pm4py.ocel_objects_summary(ocel)
def test_ocel_filtering_ev_ids(self):
ocel = pm4py.read_ocel("input_data/ocel/example_log.jsonocel")
filtered_ocel = pm4py.filter_ocel_events(ocel, ["e1"])
def test_ocel_filtering_obj_ids(self):
ocel = pm4py.read_ocel("input_data/ocel/example_log.jsonocel")
filtered_ocel = pm4py.filter_ocel_objects(ocel, ["o1"], level=1)
filtered_ocel = pm4py.filter_ocel_objects(ocel, ["o1"], level=2)
def test_ocel_filtering_obj_types(self):
ocel = pm4py.read_ocel("input_data/ocel/example_log.jsonocel")
filtered_ocel = pm4py.filter_ocel_object_types(ocel, ["order"])
def test_ocel_filtering_cc(self):
ocel = pm4py.read_ocel("input_data/ocel/example_log.jsonocel")
filtered_ocel = pm4py.filter_ocel_cc_object(ocel, "o1")
def test_ocel_drop_duplicates(self):
ocel = pm4py.read_ocel("input_data/ocel/example_log.jsonocel")
filtered_ocel = pm4py.ocel_drop_duplicates(ocel)
def test_ocel_add_index_based_timedelta(self):
ocel = pm4py.read_ocel("input_data/ocel/example_log.jsonocel")
filtered_ocel = pm4py.ocel_add_index_based_timedelta(ocel)
def test_ocel2_xml(self):
ocel = pm4py.read_ocel2("input_data/ocel/ocel20_example.xmlocel")
pm4py.write_ocel2(ocel, "test_output_data/ocel20_example.xmlocel")
os.remove("test_output_data/ocel20_example.xmlocel")
def test_ocel2_sqlite(self):
ocel = pm4py.read_ocel2("input_data/ocel/ocel20_example.sqlite")
pm4py.write_ocel2(ocel, "test_output_data/ocel20_example.sqlite")
os.remove("test_output_data/ocel20_example.sqlite")
if __name__ == "__main__":
unittest.main()
|