File size: 3,025 Bytes
8097001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import os
import unittest
import importlib.util

from pm4py.objects.log.importer.xes import importer as xes_importer
from pm4py.objects.log.util import  get_class_representation
from pm4py.algo.transformation.log_to_features import algorithm as log_to_features


class DecisionTreeTest(unittest.TestCase):
    def test_decisiontree_evattrvalue(self):
        if importlib.util.find_spec("sklearn"):
            from pm4py.util import ml_utils
            from pm4py.visualization.decisiontree import visualizer as dt_vis

            # to avoid static method warnings in tests,
            # that by construction of the unittest package have to be expressed in such way
            self.dummy_variable = "dummy_value"
            log_path = os.path.join("input_data", "roadtraffic50traces.xes")
            log = xes_importer.apply(log_path)
            data, feature_names = log_to_features.apply(log, variant=log_to_features.Variants.TRACE_BASED,
                                                        parameters={"str_tr_attr": [], "str_ev_attr": ["concept:name"],
                                                                    "num_tr_attr": [], "num_ev_attr": ["amount"]})
            target, classes = get_class_representation.get_class_representation_by_str_ev_attr_value_value(log,
                                                                                                           "concept:name")
            clf = ml_utils.DecisionTreeClassifier(max_depth=7)
            clf.fit(data, target)
            gviz = dt_vis.apply(clf, feature_names, classes,
                                parameters={dt_vis.Variants.CLASSIC.value.Parameters.FORMAT: "svg"})
            del gviz

    def test_decisiontree_traceduration(self):
        if importlib.util.find_spec("sklearn"):
            from pm4py.util import ml_utils
            from pm4py.visualization.decisiontree import visualizer as dt_vis

            # to avoid static method warnings in tests,
            # that by construction of the unittest package have to be expressed in such way
            self.dummy_variable = "dummy_value"
            log_path = os.path.join("input_data", "roadtraffic50traces.xes")
            log = xes_importer.apply(log_path)
            data, feature_names = log_to_features.apply(log, variant=log_to_features.Variants.TRACE_BASED,
                                                        parameters={"str_tr_attr": [], "str_ev_attr": ["concept:name"],
                                                                    "num_tr_attr": [], "num_ev_attr": ["amount"]})
            target, classes = get_class_representation.get_class_representation_by_trace_duration(log, 2 * 8640000)
            clf = ml_utils.DecisionTreeClassifier(max_depth=7)
            clf.fit(data, target)
            gviz = dt_vis.apply(clf, feature_names, classes,
                                parameters={dt_vis.Variants.CLASSIC.value.Parameters.FORMAT: "svg"})
            del gviz


if __name__ == "__main__":
    unittest.main()