Spaces:
Sleeping
Sleeping
File size: 8,351 Bytes
8097001 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import logging
import os, sys
import unittest
from pm4py.objects.conversion.log import converter as log_conversion
from pm4py.algo.conformance.tokenreplay import algorithm as token_replay
from pm4py.algo.conformance.tokenreplay.variants.token_replay import NoConceptNameException
from pm4py.algo.discovery.inductive import algorithm as inductive_miner
from pm4py.objects import petri_net
from pm4py.objects.log.util import dataframe_utils
from pm4py.util import constants, pandas_utils
from pm4py.objects.log.importer.xes import importer as xes_importer
from pm4py.objects.log.util import sampling, sorting, index_attribute
from pm4py.objects.petri_net.exporter import exporter as petri_exporter
from pm4py.visualization.petri_net.common import visualize as pn_viz
from pm4py.objects.conversion.process_tree import converter as process_tree_converter
# from tests.constants import INPUT_DATA_DIR, OUTPUT_DATA_DIR, PROBLEMATIC_XES_DIR
INPUT_DATA_DIR = "input_data"
OUTPUT_DATA_DIR = "test_output_data"
PROBLEMATIC_XES_DIR = "xes_importer_tests"
COMPRESSED_INPUT_DATA = "compressed_input_data"
class InductiveMinerTest(unittest.TestCase):
def obtain_petri_net_through_im(self, log_name, variant=inductive_miner.Variants.IM):
# to avoid static method warnings in tests,
# that by construction of the unittest package have to be expressed in such way
self.dummy_variable = "dummy_value"
if ".xes" in log_name:
log = xes_importer.apply(log_name)
else:
df = pandas_utils.read_csv(log_name)
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
log = log_conversion.apply(df, variant=log_conversion.Variants.TO_EVENT_LOG)
process_tree = inductive_miner.apply(log)
net, marking, final_marking = process_tree_converter.apply(process_tree)
return log, net, marking, final_marking
def test_applyImdfToXES(self):
# to avoid static method warnings in tests,
# that by construction of the unittest package have to be expressed in such way
self.dummy_variable = "dummy_value"
# calculate and compare Petri nets obtained on the same log to verify that instances
# are working correctly
log1, net1, marking1, fmarking1 = self.obtain_petri_net_through_im(
os.path.join(INPUT_DATA_DIR, "running-example.xes"))
log2, net2, marking2, fmarking2 = self.obtain_petri_net_through_im(
os.path.join(INPUT_DATA_DIR, "running-example.xes"))
log1 = sorting.sort_timestamp(log1)
log1 = sampling.sample(log1)
log1 = index_attribute.insert_trace_index_as_event_attribute(log1)
log2 = sorting.sort_timestamp(log2)
log2 = sampling.sample(log2)
log2 = index_attribute.insert_trace_index_as_event_attribute(log2)
petri_exporter.apply(net1, marking1, os.path.join(OUTPUT_DATA_DIR, "running-example.pnml"))
os.remove(os.path.join(OUTPUT_DATA_DIR, "running-example.pnml"))
self.assertEqual(len(net1.places), len(net2.places))
final_marking = petri_net.obj.Marking()
for p in net1.places:
if not p.out_arcs:
final_marking[p] = 1
aligned_traces = token_replay.apply(log1, net1, marking1, final_marking)
del aligned_traces
def test_applyImdfToCSV(self):
# to avoid static method warnings in tests,
# that by construction of the unittest package have to be expressed in such way
self.dummy_variable = "dummy_value"
# calculate and compare Petri nets obtained on the same log to verify that instances
# are working correctly
log1, net1, marking1, fmarking1 = self.obtain_petri_net_through_im(
os.path.join(INPUT_DATA_DIR, "running-example.csv"))
log2, net2, marking2, fmarking2 = self.obtain_petri_net_through_im(
os.path.join(INPUT_DATA_DIR, "running-example.csv"))
log1 = sorting.sort_timestamp(log1)
log1 = sampling.sample(log1)
log1 = index_attribute.insert_trace_index_as_event_attribute(log1)
log2 = sorting.sort_timestamp(log2)
log2 = sampling.sample(log2)
log2 = index_attribute.insert_trace_index_as_event_attribute(log2)
petri_exporter.apply(net1, marking1, os.path.join(OUTPUT_DATA_DIR, "running-example.pnml"))
os.remove(os.path.join(OUTPUT_DATA_DIR, "running-example.pnml"))
self.assertEqual(len(net1.places), len(net2.places))
final_marking = petri_net.obj.Marking()
for p in net1.places:
if not p.out_arcs:
final_marking[p] = 1
aligned_traces = token_replay.apply(log1, net1, marking1, final_marking)
del aligned_traces
def test_imdfVisualizationFromXES(self):
# to avoid static method warnings in tests,
# that by construction of the unittest package have to be expressed in such way
self.dummy_variable = "dummy_value"
log, net, marking, fmarking = self.obtain_petri_net_through_im(
os.path.join(INPUT_DATA_DIR, "running-example.xes"))
log = sorting.sort_timestamp(log)
log = sampling.sample(log)
log = index_attribute.insert_trace_index_as_event_attribute(log)
petri_exporter.apply(net, marking, os.path.join(OUTPUT_DATA_DIR, "running-example.pnml"))
os.remove(os.path.join(OUTPUT_DATA_DIR, "running-example.pnml"))
gviz = pn_viz.graphviz_visualization(net)
final_marking = petri_net.obj.Marking()
for p in net.places:
if not p.out_arcs:
final_marking[p] = 1
aligned_traces = token_replay.apply(log, net, marking, final_marking)
del gviz
del aligned_traces
def test_inductive_miner_new_log(self):
import pm4py
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=True)
tree = pm4py.discover_process_tree_inductive(log, noise_threshold=0.2)
def test_inductive_miner_new_df(self):
import pm4py
log = pm4py.read_xes("input_data/running-example.xes")
tree = pm4py.discover_process_tree_inductive(log, noise_threshold=0.2)
def test_inductive_miner_new_log_dfg(self):
import pm4py
from pm4py.objects.dfg.obj import DFG
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=True)
dfg, sa, ea = pm4py.discover_dfg(log)
typed_dfg = DFG(dfg, sa, ea)
tree = pm4py.discover_process_tree_inductive(typed_dfg, noise_threshold=0.2)
def test_inductive_miner_new_df_dfg(self):
import pm4py
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=False)
typed_dfg = pm4py.discover_dfg_typed(log)
tree = pm4py.discover_process_tree_inductive(typed_dfg, noise_threshold=0.2)
def test_inductive_miner_new_log_variants(self):
import pm4py
from pm4py.util.compression.dtypes import UVCL
from pm4py.algo.discovery.inductive.variants.imf import IMFUVCL
from pm4py.algo.discovery.inductive.dtypes.im_ds import IMDataStructureUVCL
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=True)
variants = pm4py.get_variants(log)
uvcl = UVCL()
for var, occ in variants.items():
uvcl[var] = len(occ)
parameters = {"noise_threshold": 0.2}
imfuvcl = IMFUVCL(parameters)
tree = imfuvcl.apply(IMDataStructureUVCL(uvcl), parameters=parameters)
def test_inductive_miner_new_df_variants(self):
import pm4py
from pm4py.util.compression.dtypes import UVCL
from pm4py.algo.discovery.inductive.variants.imf import IMFUVCL
from pm4py.algo.discovery.inductive.dtypes.im_ds import IMDataStructureUVCL
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=True)
variants = pm4py.get_variants(log)
uvcl = UVCL()
for var, occ in variants.items():
uvcl[var] = len(occ)
parameters = {"noise_threshold": 0.2}
imfuvcl = IMFUVCL(parameters)
tree = imfuvcl.apply(IMDataStructureUVCL(uvcl), parameters=parameters)
if __name__ == "__main__":
unittest.main()
|