Spaces:
Running
Running
''' | |
This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de). | |
PM4Py is free software: you can redistribute it and/or modify | |
it under the terms of the GNU General Public License as published by | |
the Free Software Foundation, either version 3 of the License, or | |
(at your option) any later version. | |
PM4Py is distributed in the hope that it will be useful, | |
but WITHOUT ANY WARRANTY; without even the implied warranty of | |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
GNU General Public License for more details. | |
You should have received a copy of the GNU General Public License | |
along with PM4Py. If not, see <https://www.gnu.org/licenses/>. | |
''' | |
from collections import Counter | |
from typing import Optional, Tuple, List, Any, Dict | |
from pm4py.algo.discovery.inductive.cuts.factory import CutFactory | |
from pm4py.algo.discovery.inductive.dtypes.im_ds import IMDataStructureUVCL | |
from pm4py.algo.discovery.inductive.fall_through.abc import FallThrough | |
from pm4py.algo.discovery.inductive.variants.instances import IMInstance | |
from pm4py.objects.process_tree.obj import ProcessTree, Operator | |
from pm4py.util.compression import util as comut | |
from pm4py.util.compression.dtypes import UVCL | |
from enum import Enum | |
from pm4py.util import exec_utils, constants | |
class Parameters(Enum): | |
MULTIPROCESSING = "multiprocessing" | |
class ActivityConcurrentUVCL(FallThrough[IMDataStructureUVCL]): | |
MULTI_PROCESSING_LOWER_BOUND = 20 | |
def _process_candidate(cls, c: Any, log: UVCL, queue=None, ev=None, parameters: Optional[Dict[str, Any]] = None): | |
l_alt = Counter() | |
for t in log: | |
l_alt[tuple(filter(lambda e: e != c, t))] = log[t] | |
cut = cls._find_cut(IMDataStructureUVCL(l_alt), ev, parameters=parameters) | |
if queue is not None: | |
queue.put((c, cut)) | |
return cut if cut is not None else None | |
def _get_candidate(cls, obj: IMDataStructureUVCL, pool, manager, parameters: Optional[Dict[str, Any]] = None) -> Optional[Any]: | |
if parameters is None: | |
parameters = {} | |
enable_multiprocessing = exec_utils.get_param_value(Parameters.MULTIPROCESSING, parameters, constants.ENABLE_MULTIPROCESSING_DEFAULT) | |
log = obj.data_structure | |
candidates = sorted(list(comut.get_alphabet(log))) | |
if pool is None or manager is None or not enable_multiprocessing or len(candidates) <= ActivityConcurrentUVCL.MULTI_PROCESSING_LOWER_BOUND: | |
for a in candidates: | |
cut = cls._process_candidate(a, log, parameters=parameters) | |
if cut is not None: | |
return a | |
else: | |
q = manager.Queue() | |
ev = manager.Event() | |
# avoid dangerous freealloc from Python's garbage collector | |
manager.support_list.append(q) | |
manager.support_list.append(ev) | |
for a in candidates: | |
pool.apply_async(cls._process_candidate, (a, log, q, ev, parameters)) | |
potentials = set(candidates) | |
while len(potentials) > 0: | |
(c, cut) = q.get(block=True) | |
if cut is None: | |
potentials.remove(c) | |
else: | |
ev.set() | |
return c | |
return None | |
def _find_cut(cls, obj: IMDataStructureUVCL, ev, parameters: Optional[Dict[str, Any]] = None) -> Optional[Tuple[ProcessTree, List[IMDataStructureUVCL]]]: | |
for c in CutFactory.get_cuts(obj, IMInstance.IM, parameters=parameters): | |
if ev is not None and ev.is_set(): | |
return None | |
r = c.apply(obj, parameters) | |
if r is not None: | |
return r | |
return None | |
def holds(cls, obj: IMDataStructureUVCL, parameters: Optional[Dict[str, Any]] = None) -> bool: | |
return cls._get_candidate(obj, None, None, parameters) is not None | |
def apply(cls, obj: IMDataStructureUVCL, pool=None, manager=None, parameters: Optional[Dict[str, Any]] = None) -> Optional[ | |
Tuple[ProcessTree, List[IMDataStructureUVCL]]]: | |
candidate = cls._get_candidate(obj, pool, manager, parameters) | |
if candidate is None: | |
return None | |
log = obj.data_structure | |
l_a = Counter() | |
l_other = Counter() | |
for t in log: | |
l_a.update({tuple(filter(lambda e: e == candidate, t)): log[t]}) | |
l_other.update({tuple(filter(lambda e: e != candidate, t)): log[t]}) | |
return ProcessTree(operator=Operator.PARALLEL), [IMDataStructureUVCL(l_a), IMDataStructureUVCL(l_other)] | |