Spaces:
Running
Running
''' | |
This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de). | |
PM4Py is free software: you can redistribute it and/or modify | |
it under the terms of the GNU General Public License as published by | |
the Free Software Foundation, either version 3 of the License, or | |
(at your option) any later version. | |
PM4Py is distributed in the hope that it will be useful, | |
but WITHOUT ANY WARRANTY; without even the implied warranty of | |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
GNU General Public License for more details. | |
You should have received a copy of the GNU General Public License | |
along with PM4Py. If not, see <https://www.gnu.org/licenses/>. | |
''' | |
from pm4py.algo.discovery.performance_spectrum.variants import dataframe, log, dataframe_disconnected, log_disconnected | |
from pm4py.util import exec_utils | |
from enum import Enum | |
from pm4py.util import constants, pandas_utils | |
from typing import Optional, Dict, Any, Union, List | |
from pm4py.objects.log.obj import EventLog, EventStream | |
import pandas as pd | |
class Parameters(Enum): | |
ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY | |
TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_TIMESTAMP_KEY | |
CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY | |
ATTRIBUTE_KEY = constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY | |
PARAMETER_SAMPLE_SIZE = "sample_size" | |
class Outputs(Enum): | |
LIST_ACTIVITIES = "list_activities" | |
POINTS = "points" | |
class Variants(Enum): | |
DATAFRAME = dataframe | |
LOG = log | |
DATAFRAME_DISCONNECTED = dataframe_disconnected | |
LOG_DISCONNECTED = log_disconnected | |
def apply(log: Union[EventLog, EventStream, pd.DataFrame], list_activities: List[str], variant=None, parameters: Optional[Dict[Any, Any]] = None) -> Dict[str, Any]: | |
""" | |
Finds the performance spectrum provided a log/dataframe | |
and a list of activities | |
Parameters | |
------------- | |
log | |
Event log/Dataframe | |
list_activities | |
List of activities interesting for the performance spectrum (at least two) | |
variant | |
Variant to be used (see Variants Enum) | |
parameters | |
Parameters of the algorithm, including: | |
- Parameters.ACTIVITY_KEY | |
- Parameters.TIMESTAMP_KEY | |
Returns | |
------------- | |
ps | |
Performance spectrum object (dictionary) | |
""" | |
from pm4py.objects.conversion.log import converter as log_conversion | |
if parameters is None: | |
parameters = {} | |
sample_size = exec_utils.get_param_value(Parameters.PARAMETER_SAMPLE_SIZE, parameters, 10000) | |
if len(list_activities) < 2: | |
raise Exception("performance spectrum can be applied providing at least two activities!") | |
points = None | |
if pandas_utils.check_is_pandas_dataframe(log): | |
if variant is None: | |
variant = Variants.DATAFRAME | |
points = exec_utils.get_variant(variant).apply(log, list_activities, sample_size, parameters) | |
if points is None: | |
if variant is None: | |
variant = Variants.LOG | |
points = exec_utils.get_variant(variant).apply(log_conversion.apply(log, variant=log_conversion.Variants.TO_EVENT_LOG, parameters=parameters), list_activities, sample_size, | |
parameters) | |
ps = {Outputs.LIST_ACTIVITIES.value: list_activities, Outputs.POINTS.value: points} | |
return ps | |