Spaces:
Running
Running
''' | |
This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de). | |
PM4Py is free software: you can redistribute it and/or modify | |
it under the terms of the GNU General Public License as published by | |
the Free Software Foundation, either version 3 of the License, or | |
(at your option) any later version. | |
PM4Py is distributed in the hope that it will be useful, | |
but WITHOUT ANY WARRANTY; without even the implied warranty of | |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
GNU General Public License for more details. | |
You should have received a copy of the GNU General Public License | |
along with PM4Py. If not, see <https://www.gnu.org/licenses/>. | |
''' | |
from pm4py.objects.ocel.obj import OCEL | |
from typing import Optional, Dict, Any | |
from pm4py.algo.discovery.ocel.ocdfg import algorithm as ocdfg_disc | |
import numpy as np | |
from enum import Enum | |
from pm4py.util import exec_utils, constants | |
class Parameters(Enum): | |
MAX_LEN = "max_len" | |
INCLUDE_HEADER = "include_header" | |
INCLUDE_PERFORMANCE = "include_performance" | |
def __get_descr(curr, include_performance): | |
stru = " \"%s\" -> \"%s\" (frequency (number of events) = %d, frequency (number of objects) = %d" % ( | |
curr[1][0], curr[1][1], curr[2], curr[3]) | |
if include_performance: | |
stru += ", duration = %.2f" % curr[5] | |
stru += ")\n" | |
return stru | |
def apply(ocel: OCEL, parameters: Optional[Dict[Any, Any]] = None) -> str: | |
if parameters is None: | |
parameters = {} | |
max_len = exec_utils.get_param_value(Parameters.MAX_LEN, parameters, constants.OPENAI_MAX_LEN) | |
include_header = exec_utils.get_param_value(Parameters.INCLUDE_HEADER, parameters, True) | |
include_performance = exec_utils.get_param_value(Parameters.INCLUDE_PERFORMANCE, parameters, True) | |
ocdfg = ocdfg_disc.apply(ocel, parameters=parameters) | |
object_types = sorted(list(ocdfg["edges"]["total_objects"].keys())) | |
edges = set() | |
for ot in object_types: | |
for e in ocdfg["edges"]["event_couples"][ot]: | |
edges.add((ot, e)) | |
edges_values = [] | |
for obj in edges: | |
ot = obj[0] | |
e = obj[1] | |
edges_values.append([obj[0], obj[1], | |
len(ocdfg["edges"]["event_couples"][ot][e]), | |
len(ocdfg["edges"]["unique_objects"][ot][e]), | |
len(ocdfg["edges"]["total_objects"][ot][e]), | |
float(np.average(ocdfg["edges_performance"]["event_couples"][ot][e])), | |
float(np.average(ocdfg["edges_performance"]["total_objects"][ot][e])) | |
]) | |
edges_values = sorted(edges_values, key=lambda x: (x[2], x[5], x[0], x[1]), reverse=True) | |
i = 0 | |
curr_len = 0 | |
while i < len(edges_values): | |
if curr_len >= max_len: | |
break | |
stru = __get_descr(edges_values[i], include_performance) | |
curr_len += len(stru) | |
i = i + 1 | |
edges_values = edges_values[:i] | |
ot_edges = {} | |
for edg in edges_values: | |
if not edg[0] in ot_edges: | |
ot_edges[edg[0]] = [] | |
ot_edges[edg[0]].append(edg) | |
ret = ["\n"] | |
if include_header: | |
ret.append("If I have an object-centric event log with the following directly follows graph (split between the different object types):\n") | |
for ot in ot_edges: | |
ret.append("\nObject type: %s\n" % (ot)) | |
for edg in ot_edges[ot]: | |
ret.append(__get_descr(edg, include_performance)) | |
ret.append("\n") | |
return "".join(ret) | |