kota
initial commit
e60e568
raw
history blame
16.1 kB
'''
This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de).
PM4Py is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
PM4Py is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PM4Py. If not, see <https://www.gnu.org/licenses/>.
'''
import copy
import hashlib
from typing import Optional, List, Dict, Tuple
from pm4py.objects.process_tree import obj as pt
from pm4py.objects.process_tree import obj as pt_op
from pm4py.objects.process_tree import state as pt_st
from pm4py.objects.process_tree.obj import ProcessTree
from pm4py.util import constants
def fold(tree):
'''
This method reduces a process tree by merging nodes of the form N(N(a,b),c) into N(a,b,c), i.e., where
N = || or X. For example X(X(a,b),c) == X(a,b,c).
Furthermore, meaningless parts, e.g., internal nodes without children, or, operators with one child are removed
as well.
:param tree:
:return:
'''
tree = copy.deepcopy(tree)
tree = _fold(tree)
root = tree
while root.parent is None and len(tree.children) == 1:
root = tree.children[0]
root.parent = None
tree.children.clear()
del tree
tree = root
tree_str = str(tree)
tree = reduce_tau_leafs(tree)
tau_leafs_red_tree_str = str(tree)
if len(tau_leafs_red_tree_str) != len(tree_str):
tree = fold(tree)
tree_str = str(tree)
tree2 = _fold(tree)
tree2_str = str(tree2)
if len(tree2_str) != len(tree_str):
tree = fold(tree2)
return tree
def _fold(tree):
tree = reduce_tau_leafs(tree)
if len(tree.children) > 0:
tree.children = list(map(lambda c: _fold(c), tree.children))
tree.children = list(filter(lambda c: c is not None, tree.children))
if len(tree.children) == 0:
tree.parent = None
tree.children = None
return None
elif len(tree.children) == 1:
child = tree.children[0]
child.parent = tree.parent
tree.parent = None
tree.children = None
return child
if tree.operator in [pt_op.Operator.SEQUENCE, pt_op.Operator.PARALLEL]:
i = 0
while i < len(tree.children):
child = tree.children[i]
if child.operator is None and child.label is None:
del tree.children[i]
continue
i = i + 1
if len(tree.children) == 0:
tree.operator = None
if tree.operator in [pt_op.Operator.SEQUENCE, pt_op.Operator.XOR, pt_op.Operator.PARALLEL]:
chlds = [c for c in tree.children]
for c in chlds:
if c.operator == tree.operator:
i = tree.children.index(c)
tree.children[i:i] = c.children
for cc in c.children:
cc.parent = tree
tree.children.remove(c)
c.children.clear()
c.parent = None
return tree
def reduce_tau_leafs(tree):
'''
This method reduces tau leaves that are not meaningful. For example tree ->(a,\tau,b) is reduced to ->(a,b).
In some cases this results in constructs such as ->(a), i.e., a sequence with a single child. Such constructs
are not further reduced.
:param tree:
:return:
'''
if len(tree.children) > 0:
for c in tree.children:
reduce_tau_leafs(c)
silents = 0
for c in tree.children:
if is_tau_leaf(c):
silents += 1
if silents > 0:
if len(tree.children) == silents:
# all children are tau, keep one (might be folded later)
if tree.operator in [pt_op.Operator.SEQUENCE, pt_op.Operator.PARALLEL, pt_op.Operator.XOR,
pt_op.Operator.OR]:
# remove all but one, later reductions might need the fact that skipping is possible
while silents > 1:
cc = tree.children
for c in cc:
if is_tau_leaf(c):
c.parent = None
tree.children.remove(c)
silents -= 1
break
elif tree.operator == pt_op.Operator.LOOP and len(tree.children) == 2:
# remove all loop is redundant
cc = tree.children
for c in cc:
if is_tau_leaf(c):
c.parent = None
tree.children.remove(c)
else:
# at least one non-tau child
if tree.operator in [pt_op.Operator.SEQUENCE, pt_op.Operator.PARALLEL]:
# remove all, they are redundant for these operators
cc = tree.children
for c in cc:
if is_tau_leaf(c):
c.parent = None
tree.children.remove(c)
elif tree.operator in [pt_op.Operator.XOR, pt_op.Operator.OR]:
# keep one, we should be able to skip
while silents > 1:
cc = tree.children
for c in cc:
if is_tau_leaf(c):
c.parent = None
tree.children.remove(c)
silents -= 1
break
return tree
def is_tau_leaf(tree):
return is_leaf(tree) and tree.label is None
def is_leaf(tree):
return (tree.children is None or len(tree.children) == 0) and tree.operator is None
def project_execution_sequence_to_leafs(execution_sequence):
"""
Project an execution sequence to the set of leafs
of the tree.
Parameters
------------
execution_sequence
Execution sequence on the process tree
Returns
------------
list_leafs
Leafs nodes of the process tree
"""
return list(map(lambda x: x[0],
filter(lambda x: (x[1] is pt_st.State.OPEN and len(x[0].children) == 0), execution_sequence)))
def project_execution_sequence_to_labels(execution_sequence):
"""
Project an execution sequence to a set of labels
Parameters
------------
execution_sequence
Execution sequence on the process tree
Returns
------------
list_labels
List of labels contained in the process tree
"""
return list(map(lambda x: x.label,
filter(lambda x: x.label is not None, project_execution_sequence_to_leafs(execution_sequence))))
def parse(string_rep):
"""
Parse a string provided by the user to a process tree
(initialization method)
Parameters
------------
string_rep
String representation of the process tree
Returns
------------
node
Process tree object
"""
depth_cache = dict()
depth = 0
return parse_recursive(string_rep, depth_cache, depth)
def parse_recursive(string_rep, depth_cache, depth):
"""
Parse a string provided by the user to a process tree
(recursive method)
Parameters
------------
string_rep
String representation of the process tree
depth_cache
Depth cache of the algorithm
depth
Current step depth
Returns
-----------
node
Process tree object
"""
string_rep = string_rep.strip().replace("\r", "").replace("\n", " ")
node = None
operator = None
if string_rep.startswith(pt_op.Operator.LOOP.value):
operator = pt_op.Operator.LOOP
string_rep = string_rep[len(pt_op.Operator.LOOP.value):]
elif string_rep.startswith(pt_op.Operator.PARALLEL.value):
operator = pt_op.Operator.PARALLEL
string_rep = string_rep[len(pt_op.Operator.PARALLEL.value):]
elif string_rep.startswith(pt_op.Operator.XOR.value):
operator = pt_op.Operator.XOR
string_rep = string_rep[len(pt_op.Operator.XOR.value):]
elif string_rep.startswith(pt_op.Operator.OR.value):
operator = pt_op.Operator.OR
string_rep = string_rep[len(pt_op.Operator.OR.value):]
elif string_rep.startswith(pt_op.Operator.SEQUENCE.value):
operator = pt_op.Operator.SEQUENCE
string_rep = string_rep[len(pt_op.Operator.SEQUENCE.value):]
elif string_rep.startswith(pt_op.Operator.INTERLEAVING.value):
operator = pt_op.Operator.INTERLEAVING
string_rep = string_rep[len(pt_op.Operator.INTERLEAVING.value):]
if operator is not None:
parent = None if depth == 0 else depth_cache[depth - 1]
node = pt.ProcessTree(operator=operator, parent=parent)
depth_cache[depth] = node
if parent is not None:
parent.children.append(node)
depth += 1
string_rep = string_rep.strip()
assert (string_rep[0] == '(')
parse_recursive(string_rep[1:], depth_cache, depth)
else:
label = None
if string_rep.startswith('\''):
string_rep = string_rep[1:]
escape_ext = string_rep.find('\'')
label = string_rep[0:escape_ext]
string_rep = string_rep[escape_ext + 1:]
else:
assert (string_rep.startswith('tau') or string_rep.startswith('τ') or string_rep.startswith(u'\u03c4'))
if string_rep.startswith('tau'):
string_rep = string_rep[len('tau'):]
elif string_rep.startswith('τ'):
string_rep = string_rep[len('τ'):]
elif string_rep.startswith(u'\u03c4'):
string_rep = string_rep[len(u'\u03c4'):]
parent = None if depth == 0 else depth_cache[depth - 1]
node = pt.ProcessTree(operator=operator, parent=parent, label=label)
if parent is not None:
parent.children.append(node)
while string_rep.strip().startswith(')'):
depth -= 1
string_rep = (string_rep.strip())[1:]
if len(string_rep.strip()) > 0:
parse_recursive((string_rep.strip())[1:], depth_cache, depth)
return node
def tree_sort(tree):
"""
Sort a tree in such way that the order of the nodes
in AND/XOR children is always the same.
This is a recursive function
Parameters
--------------
tree
Process tree
"""
tree.labels_hash_sum = 0
for child in tree.children:
tree_sort(child)
tree.labels_hash_sum += child.labels_hash_sum
if tree.label is not None:
# this assures that among different executions, the same string gets always the same hash
this_hash = int(hashlib.md5(str(tree.label).encode(constants.DEFAULT_ENCODING)).hexdigest(), 16)
tree.labels_hash_sum += this_hash
if tree.operator is pt_op.Operator.PARALLEL or tree.operator is pt_op.Operator.XOR:
tree.children = sorted(tree.children, key=lambda x: x.labels_hash_sum)
def structurally_language_equal(tree1, tree2):
'''
this function checks if two given process trees are structurally equal, modulo, shuffling of children (if allowed),
i.e., in the parallel, or and xor operators, the order does not matter.
:param tree1:
:param tree2:
:return:
'''
if tree1.label is not None:
return True if tree2.label == tree1.label else False
elif len(tree1.children) == 0:
return tree2.label is None and len(tree2.children) == 0
else:
if tree1.operator == tree2.operator:
if len(tree1.children) != len(tree2.children):
return False
if tree1.operator in [pt_op.Operator.SEQUENCE, pt_op.Operator.LOOP]:
for i in range(len(tree1.children)):
if not structurally_language_equal(tree1.children[i], tree2.children[i]):
return False
return True
elif tree1.operator in [pt_op.Operator.PARALLEL, pt_op.Operator.XOR, pt_op.Operator.OR]:
matches = list(range(len(tree1.children)))
for i in range(len(tree1.children)):
mm = [m for m in matches]
for j in mm:
if structurally_language_equal(tree1.children[i], tree2.children[j]):
matches.remove(j)
break
return True if len(matches) == 0 else False
else:
return False
def get_process_tree_height(pt: ProcessTree) -> int:
"""
calculates from the given node the max height downwards
:param pt: process tree node
:return: height
"""
if is_leaf(pt):
return 1
else:
return 1 + max([get_process_tree_height(x) for x in pt.children])
def process_tree_to_binary_process_tree(tree: ProcessTree) -> ProcessTree:
if len(tree.children) > 2:
left_tree = tree.children[0]
right_tree_op = tree.operator
if tree.operator == pt_op.Operator.LOOP:
right_tree_op = pt_op.Operator.XOR
right_tree = ProcessTree(operator=right_tree_op, parent=tree,
children=tree.children[1:])
for child in right_tree.children:
child.parent = right_tree
tree.children = [left_tree, right_tree]
for child in tree.children:
process_tree_to_binary_process_tree(child)
return tree
def common_ancestor(t1: ProcessTree, t2: ProcessTree) -> Optional[ProcessTree]:
parents = set()
parent = t1.parent
while parent is not None:
parents.add(parent)
parent = parent.parent
parent = t2.parent
while parent is not None:
if parent in parents:
return parent
parent = parent.parent
return None
def get_ancestors_until(t: ProcessTree, until: ProcessTree, include_until: bool = True) -> Optional[List[ProcessTree]]:
ancestors = list()
if t == until:
return ancestors
parent = t.parent
while parent != until:
ancestors.append(parent)
parent = parent.parent
if parent is None:
return None
if include_until:
ancestors.append(until)
return ancestors
def get_leaves(t: ProcessTree, leaves=None):
leaves = leaves if leaves is not None else set()
if len(t.children) == 0:
leaves.add(t)
else:
for c in t.children:
leaves = get_leaves(c, leaves)
return leaves
def get_leaves_as_tuples(t: ProcessTree, leaves=None):
leaves = leaves if leaves is not None else set()
if len(t.children) == 0:
leaves.add((id(t), t))
else:
for c in t.children:
leaves = get_leaves_as_tuples(c, leaves)
return leaves
def is_operator(tree: ProcessTree, operator: pt_op.Operator) -> bool:
return tree is not None and tree.operator is not None and tree.operator == operator
def is_any_operator_of(tree: ProcessTree, operators: List[pt_op.Operator]) -> bool:
return tree is not None and tree.operator is not None and tree.operator in operators
def is_in_state(tree: ProcessTree, target_state: ProcessTree.OperatorState,
tree_state: Dict[Tuple[int, ProcessTree], ProcessTree.OperatorState]) -> bool:
return tree is not None and (id(tree), tree) in tree_state and tree_state[(id(tree), tree)] == target_state
def is_root(tree: ProcessTree) -> bool:
return tree.parent is None