Spaces:
Sleeping
Sleeping
import logging | |
import os, sys | |
import unittest | |
from pm4py.objects.conversion.log import converter as log_conversion | |
from pm4py.algo.conformance.tokenreplay import algorithm as token_replay | |
from pm4py.algo.conformance.tokenreplay.variants.token_replay import NoConceptNameException | |
from pm4py.algo.discovery.inductive import algorithm as inductive_miner | |
from pm4py.objects import petri_net | |
from pm4py.objects.log.util import dataframe_utils | |
from pm4py.util import constants, pandas_utils | |
from pm4py.objects.log.importer.xes import importer as xes_importer | |
from pm4py.objects.log.util import sampling, sorting, index_attribute | |
from pm4py.objects.petri_net.exporter import exporter as petri_exporter | |
from pm4py.visualization.petri_net.common import visualize as pn_viz | |
from pm4py.objects.conversion.process_tree import converter as process_tree_converter | |
# from tests.constants import INPUT_DATA_DIR, OUTPUT_DATA_DIR, PROBLEMATIC_XES_DIR | |
INPUT_DATA_DIR = "input_data" | |
OUTPUT_DATA_DIR = "test_output_data" | |
PROBLEMATIC_XES_DIR = "xes_importer_tests" | |
COMPRESSED_INPUT_DATA = "compressed_input_data" | |
class InductiveMinerTest(unittest.TestCase): | |
def obtain_petri_net_through_im(self, log_name, variant=inductive_miner.Variants.IM): | |
# to avoid static method warnings in tests, | |
# that by construction of the unittest package have to be expressed in such way | |
self.dummy_variable = "dummy_value" | |
if ".xes" in log_name: | |
log = xes_importer.apply(log_name) | |
else: | |
df = pandas_utils.read_csv(log_name) | |
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT) | |
log = log_conversion.apply(df, variant=log_conversion.Variants.TO_EVENT_LOG) | |
process_tree = inductive_miner.apply(log) | |
net, marking, final_marking = process_tree_converter.apply(process_tree) | |
return log, net, marking, final_marking | |
def test_applyImdfToXES(self): | |
# to avoid static method warnings in tests, | |
# that by construction of the unittest package have to be expressed in such way | |
self.dummy_variable = "dummy_value" | |
# calculate and compare Petri nets obtained on the same log to verify that instances | |
# are working correctly | |
log1, net1, marking1, fmarking1 = self.obtain_petri_net_through_im( | |
os.path.join(INPUT_DATA_DIR, "running-example.xes")) | |
log2, net2, marking2, fmarking2 = self.obtain_petri_net_through_im( | |
os.path.join(INPUT_DATA_DIR, "running-example.xes")) | |
log1 = sorting.sort_timestamp(log1) | |
log1 = sampling.sample(log1) | |
log1 = index_attribute.insert_trace_index_as_event_attribute(log1) | |
log2 = sorting.sort_timestamp(log2) | |
log2 = sampling.sample(log2) | |
log2 = index_attribute.insert_trace_index_as_event_attribute(log2) | |
petri_exporter.apply(net1, marking1, os.path.join(OUTPUT_DATA_DIR, "running-example.pnml")) | |
os.remove(os.path.join(OUTPUT_DATA_DIR, "running-example.pnml")) | |
self.assertEqual(len(net1.places), len(net2.places)) | |
final_marking = petri_net.obj.Marking() | |
for p in net1.places: | |
if not p.out_arcs: | |
final_marking[p] = 1 | |
aligned_traces = token_replay.apply(log1, net1, marking1, final_marking) | |
del aligned_traces | |
def test_applyImdfToCSV(self): | |
# to avoid static method warnings in tests, | |
# that by construction of the unittest package have to be expressed in such way | |
self.dummy_variable = "dummy_value" | |
# calculate and compare Petri nets obtained on the same log to verify that instances | |
# are working correctly | |
log1, net1, marking1, fmarking1 = self.obtain_petri_net_through_im( | |
os.path.join(INPUT_DATA_DIR, "running-example.csv")) | |
log2, net2, marking2, fmarking2 = self.obtain_petri_net_through_im( | |
os.path.join(INPUT_DATA_DIR, "running-example.csv")) | |
log1 = sorting.sort_timestamp(log1) | |
log1 = sampling.sample(log1) | |
log1 = index_attribute.insert_trace_index_as_event_attribute(log1) | |
log2 = sorting.sort_timestamp(log2) | |
log2 = sampling.sample(log2) | |
log2 = index_attribute.insert_trace_index_as_event_attribute(log2) | |
petri_exporter.apply(net1, marking1, os.path.join(OUTPUT_DATA_DIR, "running-example.pnml")) | |
os.remove(os.path.join(OUTPUT_DATA_DIR, "running-example.pnml")) | |
self.assertEqual(len(net1.places), len(net2.places)) | |
final_marking = petri_net.obj.Marking() | |
for p in net1.places: | |
if not p.out_arcs: | |
final_marking[p] = 1 | |
aligned_traces = token_replay.apply(log1, net1, marking1, final_marking) | |
del aligned_traces | |
def test_imdfVisualizationFromXES(self): | |
# to avoid static method warnings in tests, | |
# that by construction of the unittest package have to be expressed in such way | |
self.dummy_variable = "dummy_value" | |
log, net, marking, fmarking = self.obtain_petri_net_through_im( | |
os.path.join(INPUT_DATA_DIR, "running-example.xes")) | |
log = sorting.sort_timestamp(log) | |
log = sampling.sample(log) | |
log = index_attribute.insert_trace_index_as_event_attribute(log) | |
petri_exporter.apply(net, marking, os.path.join(OUTPUT_DATA_DIR, "running-example.pnml")) | |
os.remove(os.path.join(OUTPUT_DATA_DIR, "running-example.pnml")) | |
gviz = pn_viz.graphviz_visualization(net) | |
final_marking = petri_net.obj.Marking() | |
for p in net.places: | |
if not p.out_arcs: | |
final_marking[p] = 1 | |
aligned_traces = token_replay.apply(log, net, marking, final_marking) | |
del gviz | |
del aligned_traces | |
def test_inductive_miner_new_log(self): | |
import pm4py | |
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=True) | |
tree = pm4py.discover_process_tree_inductive(log, noise_threshold=0.2) | |
def test_inductive_miner_new_df(self): | |
import pm4py | |
log = pm4py.read_xes("input_data/running-example.xes") | |
tree = pm4py.discover_process_tree_inductive(log, noise_threshold=0.2) | |
def test_inductive_miner_new_log_dfg(self): | |
import pm4py | |
from pm4py.objects.dfg.obj import DFG | |
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=True) | |
dfg, sa, ea = pm4py.discover_dfg(log) | |
typed_dfg = DFG(dfg, sa, ea) | |
tree = pm4py.discover_process_tree_inductive(typed_dfg, noise_threshold=0.2) | |
def test_inductive_miner_new_df_dfg(self): | |
import pm4py | |
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=False) | |
typed_dfg = pm4py.discover_dfg_typed(log) | |
tree = pm4py.discover_process_tree_inductive(typed_dfg, noise_threshold=0.2) | |
def test_inductive_miner_new_log_variants(self): | |
import pm4py | |
from pm4py.util.compression.dtypes import UVCL | |
from pm4py.algo.discovery.inductive.variants.imf import IMFUVCL | |
from pm4py.algo.discovery.inductive.dtypes.im_ds import IMDataStructureUVCL | |
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=True) | |
variants = pm4py.get_variants(log) | |
uvcl = UVCL() | |
for var, occ in variants.items(): | |
uvcl[var] = len(occ) | |
parameters = {"noise_threshold": 0.2} | |
imfuvcl = IMFUVCL(parameters) | |
tree = imfuvcl.apply(IMDataStructureUVCL(uvcl), parameters=parameters) | |
def test_inductive_miner_new_df_variants(self): | |
import pm4py | |
from pm4py.util.compression.dtypes import UVCL | |
from pm4py.algo.discovery.inductive.variants.imf import IMFUVCL | |
from pm4py.algo.discovery.inductive.dtypes.im_ds import IMDataStructureUVCL | |
log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=True) | |
variants = pm4py.get_variants(log) | |
uvcl = UVCL() | |
for var, occ in variants.items(): | |
uvcl[var] = len(occ) | |
parameters = {"noise_threshold": 0.2} | |
imfuvcl = IMFUVCL(parameters) | |
tree = imfuvcl.apply(IMDataStructureUVCL(uvcl), parameters=parameters) | |
if __name__ == "__main__": | |
unittest.main() | |