linpershey's picture
Add 'pm4py/' from commit '80970016c5e1e79af7c37df0dd88e17587fe7bcf'
b4ba3ec
raw
history blame
20.8 kB
'''
This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de).
PM4Py is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
PM4Py is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PM4Py. If not, see <https://www.gnu.org/licenses/>.
'''
__doc__ = """
The ``pm4py.convert`` module contains the cross-conversions implemented in ``pm4py``
"""
from typing import Union, Tuple, Optional, Collection, List, Any, Dict
import pandas as pd
from copy import deepcopy
from pm4py.objects.bpmn.obj import BPMN
from pm4py.objects.ocel.obj import OCEL
from pm4py.objects.powl.obj import POWL
from pm4py.objects.heuristics_net.obj import HeuristicsNet
from pm4py.objects.log.obj import EventLog, EventStream
from pm4py.objects.petri_net.obj import Marking
from pm4py.objects.process_tree.obj import ProcessTree
from pm4py.objects.petri_net.obj import PetriNet
from pm4py.util import constants, nx_utils
from pm4py.utils import get_properties, __event_log_deprecation_warning
from pm4py.objects.transition_system.obj import TransitionSystem
from pm4py.util.pandas_utils import check_is_pandas_dataframe, check_pandas_dataframe_columns
import networkx as nx
def convert_to_event_log(obj: Union[pd.DataFrame, EventStream], case_id_key: str = "case:concept:name", **kwargs) -> EventLog:
"""
Converts a DataFrame/EventStream object to an event log object
:param obj: DataFrame or EventStream object
:param case_id_key: attribute to be used as case identifier
:rtype: ``EventLog``
.. code-block:: python3
import pandas as pd
import pm4py
dataframe = pm4py.read_csv("tests/input_data/running-example.csv")
dataframe = pm4py.format_dataframe(dataframe, case_id_column='case:concept:name', activity_column='concept:name', timestamp_column='time:timestamp')
log = pm4py.convert_to_event_log(dataframe)
"""
if check_is_pandas_dataframe(obj):
check_pandas_dataframe_columns(obj, case_id_key=case_id_key)
parameters = get_properties(obj, case_id_key=case_id_key)
for k, v in kwargs.items():
parameters[k] = v
from pm4py.objects.conversion.log import converter
log = converter.apply(obj, variant=converter.Variants.TO_EVENT_LOG, parameters=parameters)
__event_log_deprecation_warning(log)
return log
def convert_to_event_stream(obj: Union[EventLog, pd.DataFrame], case_id_key: str = "case:concept:name", **kwargs) -> EventStream:
"""
Converts a log object to an event stream
:param obj: log object
:param case_id_key: attribute to be used as case identifier
:rtype: ``EventStream``
.. code-block:: python3
import pm4py
log = pm4py.read_xes("tests/input_data/running-example.xes")
event_stream = pm4py.convert_to_event_stream(log)
"""
if check_is_pandas_dataframe(obj):
check_pandas_dataframe_columns(obj, case_id_key=case_id_key)
parameters = get_properties(obj, case_id_key=case_id_key)
for k, v in kwargs.items():
parameters[k] = v
from pm4py.objects.conversion.log import converter
stream = converter.apply(obj, variant=converter.Variants.TO_EVENT_STREAM, parameters=parameters)
__event_log_deprecation_warning(stream)
return stream
def convert_to_dataframe(obj: Union[EventStream, EventLog], **kwargs) -> pd.DataFrame:
"""
Converts a log object to a dataframe
:param obj: log object
:rtype: ``pd.DataFrame``
.. code-block:: python3
import pm4py
log = pm4py.read_xes("tests/input_data/running-example.xes")
dataframe = pm4py.convert_to_dataframe(log)
"""
if check_is_pandas_dataframe(obj):
check_pandas_dataframe_columns(obj)
parameters = get_properties(obj)
for k, v in kwargs.items():
parameters[k] = v
from pm4py.objects.conversion.log import converter
df = converter.apply(obj, variant=converter.Variants.TO_DATA_FRAME, parameters=parameters)
return df
def convert_to_bpmn(*args: Union[Tuple[PetriNet, Marking, Marking], ProcessTree]) -> BPMN:
"""
Converts an object to a BPMN diagram.
As an input, either a Petri net (with corresponding initial and final marking) or a process tree can be provided.
A process tree can always be converted into a BPMN model and thus quality of the result object is guaranteed.
For Petri nets, the quality of the converison largely depends on the net provided (e.g., sound WF-nets are likely to produce reasonable BPMN models)
:param args: petri net (with initial and final marking) or process tree
:rtype: ``BPMN``
.. code-block:: python3
import pm4py
# import a Petri net from a file
net, im, fm = pm4py.read_pnml("tests/input_data/running-example.pnml")
bpmn_graph = pm4py.convert_to_bpmn(net, im, fm)
"""
from pm4py.objects.process_tree.obj import ProcessTree
from pm4py.objects.bpmn.obj import BPMN
if isinstance(args[0], BPMN):
# the object is already a BPMN
return args[0]
elif isinstance(args[0], ProcessTree):
from pm4py.objects.conversion.process_tree.variants import to_bpmn
return to_bpmn.apply(args[0])
else:
# try to convert the object to a Petri net. Then, use the PM4Py PN-to-BPMN converter
# to get the BPMN object
try:
net, im, fm = convert_to_petri_net(*args)
from pm4py.objects.conversion.wf_net.variants import to_bpmn
return to_bpmn.apply(net, im, fm)
except:
# don't do nothing and throw the following exception
pass
# if no conversion is done, then the format of the arguments is unsupported
raise Exception("unsupported conversion of the provided object to BPMN")
def convert_to_petri_net(*args: Union[BPMN, ProcessTree, HeuristicsNet, POWL, dict]) -> Tuple[PetriNet, Marking, Marking]:
"""
Converts an input model to an (accepting) Petri net.
The input objects can either be a process tree, BPMN model or a Heuristic net.
The output is a triple, containing the Petri net and the initial and final markings. The markings are only returned if they can be reasonable derived from the input model.
:param args: process tree, Heuristics net, BPMN or POWL model
:rtype: ``Tuple[PetriNet, Marking, Marking]``
.. code-block:: python3
import pm4py
# imports a process tree from a PTML file
process_tree = pm4py.read_ptml("tests/input_data/running-example.ptml")
net, im, fm = pm4py.convert_to_petri_net(process_tree)
"""
if isinstance(args[0], PetriNet):
# the object is already a Petri net
return args[0], args[1], args[2]
elif isinstance(args[0], ProcessTree):
if isinstance(args[0], POWL):
from pm4py.objects.conversion.powl import converter
return converter.apply(args[0])
from pm4py.objects.conversion.process_tree.variants import to_petri_net
return to_petri_net.apply(args[0])
elif isinstance(args[0], BPMN):
from pm4py.objects.conversion.bpmn.variants import to_petri_net
return to_petri_net.apply(args[0])
elif isinstance(args[0], HeuristicsNet):
from pm4py.objects.conversion.heuristics_net.variants import to_petri_net
return to_petri_net.apply(args[0])
elif isinstance(args[0], dict):
# DFG
from pm4py.objects.conversion.dfg.variants import to_petri_net_activity_defines_place
return to_petri_net_activity_defines_place.apply(args[0], parameters={
to_petri_net_activity_defines_place.Parameters.START_ACTIVITIES: args[1],
to_petri_net_activity_defines_place.Parameters.END_ACTIVITIES: args[2]})
# if no conversion is done, then the format of the arguments is unsupported
raise Exception("unsupported conversion of the provided object to Petri net")
def convert_to_process_tree(*args: Union[Tuple[PetriNet, Marking, Marking], BPMN]) -> ProcessTree:
"""
Converts an input model to a process tree.
The input models can either be Petri nets (marked) or BPMN models.
For both input types, the conversion is not guaranteed to work, hence, invocation of the method can yield an Exception.
:param args: petri net (along with initial and final marking) or BPMN
:rtype: ``ProcessTree``
.. code-block:: python3
import pm4py
# imports a BPMN file
bpmn_graph = pm4py.read_bpmn("tests/input_data/running-example.bpmn")
# converts the BPMN to a process tree (through intermediate conversion to a Petri net)
process_tree = pm4py.convert_to_process_tree(bpmn_graph)
"""
from pm4py.objects.process_tree.obj import ProcessTree
from pm4py.objects.petri_net.obj import PetriNet
if isinstance(args[0], ProcessTree):
# the object is already a process tree
return args[0]
if isinstance(args[0], PetriNet):
net, im, fm = args[0], args[1], args[2]
else:
net, im, fm = convert_to_petri_net(*args)
from pm4py.objects.conversion.wf_net.variants import to_process_tree
tree = to_process_tree.apply(net, im, fm)
if tree is not None:
return tree
raise Exception("the object represents a model that cannot be represented as a process tree!")
def convert_to_reachability_graph(*args: Union[Tuple[PetriNet, Marking, Marking], BPMN, ProcessTree]) -> TransitionSystem:
"""
Converts an input model to a reachability graph (transition system).
The input models can either be Petri nets (with markings), BPMN models or process trees.
The output is the state-space of the model (i.e., the reachability graph), enocdoed as a ``TransitionSystem`` object.
:param args: petri net (along with initial and final marking), process tree or BPMN
:rtype: ``TransitionSystem``
.. code-block:: python3
import pm4py
# reads a Petri net from a file
net, im, fm = pm4py.read_pnml("tests/input_data/running-example.pnml")
# converts it to reachability graph
reach_graph = pm4py.convert_to_reachability_graph(net, im, fm)
"""
if isinstance(args[0], PetriNet):
net, im, fm = args[0], args[1], args[2]
else:
net, im, fm = convert_to_petri_net(*args)
from pm4py.objects.petri_net.utils import reachability_graph
return reachability_graph.construct_reachability_graph(net, im)
def convert_log_to_ocel(log: Union[EventLog, EventStream, pd.DataFrame], activity_column: str = "concept:name", timestamp_column: str = "time:timestamp", object_types: Optional[Collection[str]] = None, obj_separator: str = " AND ", additional_event_attributes: Optional[Collection[str]] = None, additional_object_attributes: Optional[Dict[str, Collection[str]]] = None) -> OCEL:
"""
Converts an event log to an object-centric event log with one or more than one
object types.
:param log_obj: log object
:param activity_column: activity column
:param timestamp_column: timestamp column
:param object_types: list of columns to consider as object types
:param obj_separator: separator between different objects in the same column
:param additional_event_attributes: additional attributes to be considered as event attributes in the OCEL
:param additional_object_attributes: additional attributes per object type to be considered as object attributes in the OCEL (dictionary in which object types are associated to their attributes, i.e., {"order": ["quantity", "cost"], "invoice": ["date", "due date"]})
:rtype: ``OCEL``
.. code-block:: python3
import pm4py
ocel = pm4py.convert_log_to_ocel(log, activity_column='concept:name', timestamp_column='time:timestamp',
object_types=['case:concept:name'])
"""
__event_log_deprecation_warning(log)
if isinstance(log, EventStream):
log = convert_to_dataframe(log)
if object_types is None:
object_types = list(set(x for x in log.columns if x == "case:concept:name" or x.startswith("ocel:type")))
from pm4py.objects.ocel.util import log_ocel
return log_ocel.log_to_ocel_multiple_obj_types(log, activity_column, timestamp_column, object_types, obj_separator, additional_event_attributes=additional_event_attributes, additional_object_attributes=additional_object_attributes)
def convert_ocel_to_networkx(ocel: OCEL, variant: str = "ocel_to_nx") -> nx.DiGraph:
"""
Converts an OCEL to a NetworkX DiGraph object.
:param ocel: object-centric event log
:param variant: variant of the conversion to use: "ocel_to_nx" -> graph containing event and object IDS and two type of relations (REL=related objects, DF=directly-follows); "ocel_features_to_nx" -> graph containing different types of interconnection at the object level
:rtype: ``nx.DiGraph``
.. code-block:: python3
import pm4py
nx_digraph = pm4py.convert_ocel_to_networkx(ocel, variant='ocel_to_nx')
"""
from pm4py.objects.conversion.ocel import converter
variant1 = None
if variant == "ocel_to_nx":
variant1 = converter.Variants.OCEL_TO_NX
elif variant == "ocel_features_to_nx":
variant1 = converter.Variants.OCEL_FEATURES_TO_NX
return converter.apply(ocel, variant=variant1)
def convert_log_to_networkx(log: Union[EventLog, EventStream, pd.DataFrame], include_df: bool = True, case_id_key: str = "concept:name", other_case_attributes_as_nodes: Optional[Collection[str]] = None, event_attributes_as_nodes: Optional[Collection[str]] = None) -> nx.DiGraph:
"""
Converts an event log object to a NetworkX DiGraph object.
The nodes of the graph are the events, the cases (and possibly the attributes of the log).
The edges are:
- Connecting each event to the corresponding case (BELONGS_TO type)
- Connecting every event to the directly-following one (DF type, if enabled)
- Connecting every case/event to the given attribute values (ATTRIBUTE_EDGE type)
:param log: log object (EventLog, EventStream, Pandas dataframe)
:param include_df: include the directly-follows graph relation in the graph (bool)
:param case_id_attribute: specify which attribute at the case level should be considered the case ID (str)
:param other_case_attributes_as_nodes: specify which attributes at the case level should be inserted in the graph as nodes (other than the caseID) (list, default empty)
:param event_attributes_as_nodes: specify which attributes at the event level should be inserted in the graph as nodes (list, default empty)
:rtype: ``nx.DiGraph``
.. code-block:: python3
import pm4py
nx_digraph = pm4py.convert_log_to_networkx(log, other_case_attributes_as_nodes=['responsible', 'department'], event_attributes_as_nodes=['concept:name', 'org:resource'])
"""
from pm4py.objects.conversion.log import converter
return converter.apply(log, variant=converter.Variants.TO_NX, parameters={"include_df": include_df, "case_id_attribute": case_id_key, "other_case_attributes_as_nodes": other_case_attributes_as_nodes, "event_attributes_as_nodes": event_attributes_as_nodes})
def convert_log_to_time_intervals(log: Union[EventLog, pd.DataFrame], filter_activity_couple: Optional[Tuple[str, str]] = None,
activity_key: str = "concept:name",
timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name",
start_timestamp_key: str = "time:timestamp"
) -> List[List[Any]]:
"""
Gets a list of intervals from an event log.
Each interval contains two temporally consecutive events and measures the time between the two events
(complete timestamp of the first against start timestamp of the second).
:param log: log object
:param filter_activity_couple: (optional) filters the intervals to only consider a given couple of activities of the log
:param activity_key: the attribute to be used as activity
:param timestamp_key: the attribute to be used as timestamp
:param case_id_key: the attribute to be used as case identifier
:param start_timestamp_key: the attribute to be used as start timestamp
:rtype: ``List[List[Any]]``
.. code-block:: python3
import pm4py
log = pm4py.read_xes('tests/input_data/receipt.xes')
time_intervals = pm4py.convert_log_to_time_intervals(log)
print(len(time_intervals))
time_intervals = pm4py.convert_log_to_time_intervals(log, ('Confirmation of receipt', 'T02 Check confirmation of receipt'))
print(len(time_intervals))
"""
__event_log_deprecation_warning(log)
properties = get_properties(log, activity_key=activity_key, case_id_key=case_id_key, timestamp_key=timestamp_key)
properties["filter_activity_couple"] = filter_activity_couple
properties[constants.PARAMETER_CONSTANT_START_TIMESTAMP_KEY] = start_timestamp_key
from pm4py.algo.transformation.log_to_interval_tree.variants import open_paths
return open_paths.log_to_intervals(log, parameters=properties)
def convert_petri_net_to_networkx(net: PetriNet, im: Marking, fm: Marking) -> nx.DiGraph:
"""
Converts a Petri net to a NetworkX DiGraph.
Each place and transition is corresponding to a node in the graph.
:param net: Petri net
:param im: initial marking
:param fm: final marking
:rtype: ``nx.DiGraph``
.. code-block:: python3
import pm4py
net, im, fm = pm4py.read_pnml('tests/input_data/running-example.pnml')
nx_digraph = pm4py.convert_petri_to_networkx(net, im, fm)
"""
G = nx_utils.DiGraph()
for place in net.places:
G.add_node(place.name, attr={"name": place.name, "is_in_im": place in im, "is_in_fm": place in fm, "type": "place"})
for trans in net.transitions:
G.add_node(trans.name, attr={"name": trans.name, "label": trans.label, "type": "transition"})
for arc in net.arcs:
G.add_edge(arc.source.name, arc.target.name, attr={"weight": arc.weight, "properties": arc.properties})
return G
def convert_petri_net_type(net: PetriNet, im: Marking, fm: Marking, type: str = "classic") -> Tuple[PetriNet, Marking, Marking]:
"""
Changes the Petri net (internal) type
:param net: petri net
:param im: initial marking
:param fm: final marking
:param type: internal type (classic, reset, inhibitor, reset_inhibitor)
:rtype: ``Tuple[PetriNet, Marking, Marking]``
.. code-block:: python3
import pm4py
net, im, fm = pm4py.read_pnml('tests/input_data/running-example.pnml')
reset_net, new_im, new_fm = pm4py.convert_petri_net_type(net, im, fm, type='reset_inhibitor')
"""
from pm4py.objects.petri_net.utils import petri_utils
[net, im, fm] = deepcopy([net, im, fm])
new_net = None
if type == "classic":
from pm4py.objects.petri_net.obj import PetriNet
new_net = PetriNet(net.name)
elif type == "reset":
from pm4py.objects.petri_net.obj import ResetNet
new_net = ResetNet(net.name)
elif type == "inhibitor":
from pm4py.objects.petri_net.obj import InhibitorNet
new_net = InhibitorNet(net.name)
elif type == "reset_inhibitor":
from pm4py.objects.petri_net.obj import ResetInhibitorNet
new_net = ResetInhibitorNet(net.name)
for place in net.places:
new_net.places.add(place)
in_arcs = set(place.in_arcs)
out_arcs = set(place.out_arcs)
for arc in in_arcs:
place.in_arcs.remove(arc)
for arc in out_arcs:
place.out_arcs.remove(arc)
for trans in net.transitions:
new_net.transitions.add(trans)
in_arcs = set(trans.in_arcs)
out_arcs = set(trans.out_arcs)
for arc in in_arcs:
trans.in_arcs.remove(arc)
for arc in out_arcs:
trans.out_arcs.remove(arc)
for arc in net.arcs:
arc_type = arc.properties["arctype"] if "arctype" in arc.properties else None
new_arc = petri_utils.add_arc_from_to(arc.source, arc.target, new_net, weight=arc.weight, type=arc_type)
return new_net, im, fm