Spaces:
Sleeping
Sleeping
from pm4py.objects.log.importer.xes import importer as xes_importer | |
from pm4py.algo.discovery.inductive import algorithm as inductive_miner | |
from pm4py.algo.discovery.footprints import algorithm as fp_discovery | |
from pm4py.algo.conformance.footprints import algorithm as fp_conformance | |
from pm4py.statistics.traces.generic.log import case_statistics | |
from pm4py.algo.discovery.dfg import algorithm as dfg_discovery | |
from pm4py.algo.filtering.log.paths import paths_filter | |
from pm4py.util.vis_utils import human_readable_stat | |
from pm4py.algo.filtering.log.variants import variants_filter | |
from pm4py.statistics.variants.log import get as variants_get | |
from examples import examples_conf | |
import os | |
import importlib.util | |
def execute_script(): | |
log = xes_importer.apply(os.path.join("..", "tests", "input_data", "receipt.xes")) | |
throughput_time = case_statistics.get_median_case_duration(log) | |
variants, variants_times = variants_get.get_variants_along_with_case_durations(log) | |
dfg = dfg_discovery.apply(log) | |
filtered_log = variants_filter.filter_log_variants_percentage(log, 0.2) | |
# filtered_log = log | |
tree = inductive_miner.apply(filtered_log) | |
fp_log = fp_discovery.apply(log, variant=fp_discovery.Variants.ENTIRE_EVENT_LOG) | |
fp_model = fp_discovery.apply(tree) | |
conf = fp_conformance.apply(fp_log, fp_model) | |
conf_occ = sorted([(x, dfg[x]) for x in conf], key=lambda y: (y[1], y[0][0], y[0][1]), reverse=True) | |
print( | |
"source activity\t\ttarget activity\t\toccurrences\t\tthroughput time log\t\tthroughput time traces with path") | |
for i in range(min(10, len(conf_occ))): | |
path = conf_occ[i][0] | |
occ = conf_occ[i][1] | |
red_log = paths_filter.apply(log, [path]) | |
red_throughput_time = case_statistics.get_median_case_duration(red_log) | |
print("%s\t\t%s\t\t%d\t\t%s\t\t%s" % ( | |
path[0], path[1], occ, human_readable_stat(throughput_time), human_readable_stat(red_throughput_time))) | |
variants_length = sorted([(x, len(variants[x])) for x in variants.keys()], key=lambda y: (y[1], y[0]), reverse=True) | |
print("\nvariant\t\toccurrences\t\tthroughput time log\t\tthroughput time traces with path") | |
for i in range(min(10, len(variants_length))): | |
var = variants_length[i][0] | |
vark = str(var) | |
if len(vark) > 10: | |
vark = vark[:10] | |
occ = variants_length[i][1] | |
fp_log_var = fp_discovery.apply(variants[var], variant=fp_discovery.Variants.ENTIRE_EVENT_LOG) | |
conf_var = fp_conformance.apply(fp_log_var, fp_model) | |
is_fit = str(len(conf_var) == 0) | |
var_throughput = case_statistics.get_median_case_duration(variants[var]) | |
print("%s\t\t%d\t\t%s\t\t%s\t\t%s" % (vark, occ, is_fit, throughput_time, human_readable_stat(var_throughput))) | |
if importlib.util.find_spec("graphviz"): | |
from pm4py.algo.conformance.footprints.util import tree_visualization | |
from pm4py.visualization.process_tree import visualizer as pt_visualizer | |
# print(conf_occ) | |
conf_colors = tree_visualization.apply(tree, conf) | |
if True: | |
gviz = pt_visualizer.apply(tree, parameters={"format": examples_conf.TARGET_IMG_FORMAT, | |
pt_visualizer.Variants.WO_DECORATION.value.Parameters.COLOR_MAP: conf_colors, | |
pt_visualizer.Variants.WO_DECORATION.value.Parameters.ENABLE_DEEPCOPY: False}) | |
pt_visualizer.view(gviz) | |
if __name__ == "__main__": | |
execute_script() | |