process_mining / pm4py /examples /footprints_tree_conf.py
linpershey's picture
Add 'pm4py/' from commit '80970016c5e1e79af7c37df0dd88e17587fe7bcf'
b4ba3ec
raw
history blame
3.56 kB
from pm4py.objects.log.importer.xes import importer as xes_importer
from pm4py.algo.discovery.inductive import algorithm as inductive_miner
from pm4py.algo.discovery.footprints import algorithm as fp_discovery
from pm4py.algo.conformance.footprints import algorithm as fp_conformance
from pm4py.statistics.traces.generic.log import case_statistics
from pm4py.algo.discovery.dfg import algorithm as dfg_discovery
from pm4py.algo.filtering.log.paths import paths_filter
from pm4py.util.vis_utils import human_readable_stat
from pm4py.algo.filtering.log.variants import variants_filter
from pm4py.statistics.variants.log import get as variants_get
from examples import examples_conf
import os
import importlib.util
def execute_script():
log = xes_importer.apply(os.path.join("..", "tests", "input_data", "receipt.xes"))
throughput_time = case_statistics.get_median_case_duration(log)
variants, variants_times = variants_get.get_variants_along_with_case_durations(log)
dfg = dfg_discovery.apply(log)
filtered_log = variants_filter.filter_log_variants_percentage(log, 0.2)
# filtered_log = log
tree = inductive_miner.apply(filtered_log)
fp_log = fp_discovery.apply(log, variant=fp_discovery.Variants.ENTIRE_EVENT_LOG)
fp_model = fp_discovery.apply(tree)
conf = fp_conformance.apply(fp_log, fp_model)
conf_occ = sorted([(x, dfg[x]) for x in conf], key=lambda y: (y[1], y[0][0], y[0][1]), reverse=True)
print(
"source activity\t\ttarget activity\t\toccurrences\t\tthroughput time log\t\tthroughput time traces with path")
for i in range(min(10, len(conf_occ))):
path = conf_occ[i][0]
occ = conf_occ[i][1]
red_log = paths_filter.apply(log, [path])
red_throughput_time = case_statistics.get_median_case_duration(red_log)
print("%s\t\t%s\t\t%d\t\t%s\t\t%s" % (
path[0], path[1], occ, human_readable_stat(throughput_time), human_readable_stat(red_throughput_time)))
variants_length = sorted([(x, len(variants[x])) for x in variants.keys()], key=lambda y: (y[1], y[0]), reverse=True)
print("\nvariant\t\toccurrences\t\tthroughput time log\t\tthroughput time traces with path")
for i in range(min(10, len(variants_length))):
var = variants_length[i][0]
vark = str(var)
if len(vark) > 10:
vark = vark[:10]
occ = variants_length[i][1]
fp_log_var = fp_discovery.apply(variants[var], variant=fp_discovery.Variants.ENTIRE_EVENT_LOG)
conf_var = fp_conformance.apply(fp_log_var, fp_model)
is_fit = str(len(conf_var) == 0)
var_throughput = case_statistics.get_median_case_duration(variants[var])
print("%s\t\t%d\t\t%s\t\t%s\t\t%s" % (vark, occ, is_fit, throughput_time, human_readable_stat(var_throughput)))
if importlib.util.find_spec("graphviz"):
from pm4py.algo.conformance.footprints.util import tree_visualization
from pm4py.visualization.process_tree import visualizer as pt_visualizer
# print(conf_occ)
conf_colors = tree_visualization.apply(tree, conf)
if True:
gviz = pt_visualizer.apply(tree, parameters={"format": examples_conf.TARGET_IMG_FORMAT,
pt_visualizer.Variants.WO_DECORATION.value.Parameters.COLOR_MAP: conf_colors,
pt_visualizer.Variants.WO_DECORATION.value.Parameters.ENABLE_DEEPCOPY: False})
pt_visualizer.view(gviz)
if __name__ == "__main__":
execute_script()