Spaces:
Sleeping
Sleeping
import unittest | |
from pm4py.objects.log.util import dataframe_utils | |
from pm4py.objects.log.importer.xes import importer as xes_importer | |
from pm4py.objects.conversion.process_tree import converter as process_tree_converter | |
from pm4py.util import constants, pandas_utils | |
import os | |
class AlgorithmTest(unittest.TestCase): | |
def test_importing_xes(self): | |
from pm4py.objects.log.importer.xes import importer as xes_importer | |
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"), | |
variant=xes_importer.Variants.ITERPARSE) | |
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"), | |
variant=xes_importer.Variants.LINE_BY_LINE) | |
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"), | |
variant=xes_importer.Variants.ITERPARSE_MEM_COMPRESSED) | |
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"), | |
variant=xes_importer.Variants.CHUNK_REGEX) | |
"""def test_hiearch_clustering(self): | |
from pm4py.algo.clustering.trace_attribute_driven import algorithm as clust_algorithm | |
log = xes_importer.apply(os.path.join("input_data", "receipt.xes"), variant=xes_importer.Variants.LINE_BY_LINE, | |
parameters={xes_importer.Variants.LINE_BY_LINE.value.Parameters.MAX_TRACES: 50}) | |
# raise Exception("%d" % (len(log))) | |
clust_algorithm.apply(log, "responsible", variant=clust_algorithm.Variants.VARIANT_DMM_VEC)""" | |
def test_log_skeleton(self): | |
log = xes_importer.apply(os.path.join("input_data", "running-example.xes")) | |
from pm4py.algo.discovery.log_skeleton import algorithm as lsk_discovery | |
model = lsk_discovery.apply(log) | |
from pm4py.algo.conformance.log_skeleton import algorithm as lsk_conformance | |
conf = lsk_conformance.apply(log, model) | |
def test_alignment(self): | |
log = xes_importer.apply(os.path.join("input_data", "running-example.xes")) | |
from pm4py.algo.discovery.alpha import algorithm as alpha_miner | |
net, im, fm = alpha_miner.apply(log) | |
from pm4py.algo.conformance.alignments.petri_net import algorithm as alignments | |
aligned_traces = alignments.apply(log, net, im, fm, variant=alignments.Variants.VERSION_STATE_EQUATION_A_STAR) | |
aligned_traces = alignments.apply(log, net, im, fm, variant=alignments.Variants.VERSION_DIJKSTRA_NO_HEURISTICS) | |
from pm4py.algo.evaluation.replay_fitness import algorithm as rp_fitness_evaluator | |
fitness = rp_fitness_evaluator.apply(log, net, im, fm, variant=rp_fitness_evaluator.Variants.ALIGNMENT_BASED) | |
evaluation = rp_fitness_evaluator.evaluate(aligned_traces, | |
variant=rp_fitness_evaluator.Variants.ALIGNMENT_BASED) | |
from pm4py.algo.evaluation.precision import algorithm as precision_evaluator | |
precision = precision_evaluator.apply(log, net, im, fm, variant=rp_fitness_evaluator.Variants.ALIGNMENT_BASED) | |
def test_decomp_alignment(self): | |
log = xes_importer.apply(os.path.join("input_data", "running-example.xes")) | |
from pm4py.algo.discovery.alpha import algorithm as alpha_miner | |
net, im, fm = alpha_miner.apply(log) | |
from pm4py.algo.conformance.alignments.decomposed import algorithm as decomp_align | |
aligned_traces = decomp_align.apply(log, net, im, fm, variant=decomp_align.Variants.RECOMPOS_MAXIMAL) | |
def test_tokenreplay(self): | |
log = xes_importer.apply(os.path.join("input_data", "running-example.xes")) | |
from pm4py.algo.discovery.alpha import algorithm as alpha_miner | |
net, im, fm = alpha_miner.apply(log) | |
from pm4py.algo.conformance.tokenreplay import algorithm as token_replay | |
replayed_traces = token_replay.apply(log, net, im, fm, variant=token_replay.Variants.TOKEN_REPLAY) | |
replayed_traces = token_replay.apply(log, net, im, fm, variant=token_replay.Variants.BACKWARDS) | |
from pm4py.algo.evaluation.replay_fitness import algorithm as rp_fitness_evaluator | |
fitness = rp_fitness_evaluator.apply(log, net, im, fm, variant=rp_fitness_evaluator.Variants.TOKEN_BASED) | |
evaluation = rp_fitness_evaluator.evaluate(replayed_traces, variant=rp_fitness_evaluator.Variants.TOKEN_BASED) | |
from pm4py.algo.evaluation.precision import algorithm as precision_evaluator | |
precision = precision_evaluator.apply(log, net, im, fm, | |
variant=precision_evaluator.Variants.ETCONFORMANCE_TOKEN) | |
from pm4py.algo.evaluation.generalization import algorithm as generalization_evaluation | |
generalization = generalization_evaluation.apply(log, net, im, fm, | |
variant=generalization_evaluation.Variants.GENERALIZATION_TOKEN) | |
def test_evaluation(self): | |
log = xes_importer.apply(os.path.join("input_data", "running-example.xes")) | |
from pm4py.algo.discovery.alpha import algorithm as alpha_miner | |
net, im, fm = alpha_miner.apply(log) | |
from pm4py.algo.evaluation.simplicity import algorithm as simplicity | |
simp = simplicity.apply(net) | |
from pm4py.algo.evaluation import algorithm as evaluation_method | |
eval = evaluation_method.apply(log, net, im, fm) | |
def test_playout(self): | |
log = xes_importer.apply(os.path.join("input_data", "running-example.xes")) | |
from pm4py.algo.discovery.alpha import algorithm as alpha_miner | |
net, im, fm = alpha_miner.apply(log) | |
from pm4py.algo.simulation.playout.petri_net import algorithm | |
log2 = algorithm.apply(net, im, fm) | |
def test_tree_generation(self): | |
from pm4py.algo.simulation.tree_generator import algorithm as tree_simulator | |
tree1 = tree_simulator.apply(variant=tree_simulator.Variants.BASIC) | |
tree2 = tree_simulator.apply(variant=tree_simulator.Variants.PTANDLOGGENERATOR) | |
def test_alpha_miner_log(self): | |
log = xes_importer.apply(os.path.join("input_data", "running-example.xes")) | |
from pm4py.algo.discovery.alpha import algorithm as alpha_miner | |
net1, im1, fm1 = alpha_miner.apply(log, variant=alpha_miner.Variants.ALPHA_VERSION_CLASSIC) | |
net2, im2, fm2 = alpha_miner.apply(log, variant=alpha_miner.Variants.ALPHA_VERSION_PLUS) | |
from pm4py.algo.discovery.dfg import algorithm as dfg_discovery | |
dfg = dfg_discovery.apply(log) | |
net3, im3, fm3 = alpha_miner.apply_dfg(dfg, variant=alpha_miner.Variants.ALPHA_VERSION_CLASSIC) | |
def test_alpha_miner_dataframe(self): | |
df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv")) | |
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT) | |
from pm4py.algo.discovery.alpha import algorithm as alpha_miner | |
net, im, fm = alpha_miner.apply(df, variant=alpha_miner.Variants.ALPHA_VERSION_CLASSIC) | |
def test_tsystem(self): | |
log = xes_importer.apply(os.path.join("input_data", "running-example.xes")) | |
from pm4py.algo.discovery.transition_system import algorithm as ts_system | |
tsystem = ts_system.apply(log, variant=ts_system.Variants.VIEW_BASED) | |
def test_inductive_miner(self): | |
log = xes_importer.apply(os.path.join("input_data", "running-example.xes")) | |
from pm4py.algo.discovery.inductive import algorithm as inductive_miner | |
process_tree = inductive_miner.apply(log) | |
net, im, fm = process_tree_converter.apply(process_tree) | |
def test_performance_spectrum(self): | |
log = xes_importer.apply(os.path.join("input_data", "running-example.xes")) | |
from pm4py.algo.discovery.performance_spectrum import algorithm as pspectrum | |
ps = pspectrum.apply(log, ["register request", "decide"]) | |
df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv")) | |
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT) | |
ps = pspectrum.apply(df, ["register request", "decide"]) | |
if __name__ == "__main__": | |
unittest.main() | |