process_mining / pm4py /tests /algorithm_test.py
linpershey's picture
Add 'pm4py/' from commit '80970016c5e1e79af7c37df0dd88e17587fe7bcf'
b4ba3ec
raw
history blame
8.27 kB
import unittest
from pm4py.objects.log.util import dataframe_utils
from pm4py.objects.log.importer.xes import importer as xes_importer
from pm4py.objects.conversion.process_tree import converter as process_tree_converter
from pm4py.util import constants, pandas_utils
import os
class AlgorithmTest(unittest.TestCase):
def test_importing_xes(self):
from pm4py.objects.log.importer.xes import importer as xes_importer
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"),
variant=xes_importer.Variants.ITERPARSE)
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"),
variant=xes_importer.Variants.LINE_BY_LINE)
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"),
variant=xes_importer.Variants.ITERPARSE_MEM_COMPRESSED)
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"),
variant=xes_importer.Variants.CHUNK_REGEX)
"""def test_hiearch_clustering(self):
from pm4py.algo.clustering.trace_attribute_driven import algorithm as clust_algorithm
log = xes_importer.apply(os.path.join("input_data", "receipt.xes"), variant=xes_importer.Variants.LINE_BY_LINE,
parameters={xes_importer.Variants.LINE_BY_LINE.value.Parameters.MAX_TRACES: 50})
# raise Exception("%d" % (len(log)))
clust_algorithm.apply(log, "responsible", variant=clust_algorithm.Variants.VARIANT_DMM_VEC)"""
def test_log_skeleton(self):
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
from pm4py.algo.discovery.log_skeleton import algorithm as lsk_discovery
model = lsk_discovery.apply(log)
from pm4py.algo.conformance.log_skeleton import algorithm as lsk_conformance
conf = lsk_conformance.apply(log, model)
def test_alignment(self):
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
from pm4py.algo.discovery.alpha import algorithm as alpha_miner
net, im, fm = alpha_miner.apply(log)
from pm4py.algo.conformance.alignments.petri_net import algorithm as alignments
aligned_traces = alignments.apply(log, net, im, fm, variant=alignments.Variants.VERSION_STATE_EQUATION_A_STAR)
aligned_traces = alignments.apply(log, net, im, fm, variant=alignments.Variants.VERSION_DIJKSTRA_NO_HEURISTICS)
from pm4py.algo.evaluation.replay_fitness import algorithm as rp_fitness_evaluator
fitness = rp_fitness_evaluator.apply(log, net, im, fm, variant=rp_fitness_evaluator.Variants.ALIGNMENT_BASED)
evaluation = rp_fitness_evaluator.evaluate(aligned_traces,
variant=rp_fitness_evaluator.Variants.ALIGNMENT_BASED)
from pm4py.algo.evaluation.precision import algorithm as precision_evaluator
precision = precision_evaluator.apply(log, net, im, fm, variant=rp_fitness_evaluator.Variants.ALIGNMENT_BASED)
def test_decomp_alignment(self):
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
from pm4py.algo.discovery.alpha import algorithm as alpha_miner
net, im, fm = alpha_miner.apply(log)
from pm4py.algo.conformance.alignments.decomposed import algorithm as decomp_align
aligned_traces = decomp_align.apply(log, net, im, fm, variant=decomp_align.Variants.RECOMPOS_MAXIMAL)
def test_tokenreplay(self):
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
from pm4py.algo.discovery.alpha import algorithm as alpha_miner
net, im, fm = alpha_miner.apply(log)
from pm4py.algo.conformance.tokenreplay import algorithm as token_replay
replayed_traces = token_replay.apply(log, net, im, fm, variant=token_replay.Variants.TOKEN_REPLAY)
replayed_traces = token_replay.apply(log, net, im, fm, variant=token_replay.Variants.BACKWARDS)
from pm4py.algo.evaluation.replay_fitness import algorithm as rp_fitness_evaluator
fitness = rp_fitness_evaluator.apply(log, net, im, fm, variant=rp_fitness_evaluator.Variants.TOKEN_BASED)
evaluation = rp_fitness_evaluator.evaluate(replayed_traces, variant=rp_fitness_evaluator.Variants.TOKEN_BASED)
from pm4py.algo.evaluation.precision import algorithm as precision_evaluator
precision = precision_evaluator.apply(log, net, im, fm,
variant=precision_evaluator.Variants.ETCONFORMANCE_TOKEN)
from pm4py.algo.evaluation.generalization import algorithm as generalization_evaluation
generalization = generalization_evaluation.apply(log, net, im, fm,
variant=generalization_evaluation.Variants.GENERALIZATION_TOKEN)
def test_evaluation(self):
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
from pm4py.algo.discovery.alpha import algorithm as alpha_miner
net, im, fm = alpha_miner.apply(log)
from pm4py.algo.evaluation.simplicity import algorithm as simplicity
simp = simplicity.apply(net)
from pm4py.algo.evaluation import algorithm as evaluation_method
eval = evaluation_method.apply(log, net, im, fm)
def test_playout(self):
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
from pm4py.algo.discovery.alpha import algorithm as alpha_miner
net, im, fm = alpha_miner.apply(log)
from pm4py.algo.simulation.playout.petri_net import algorithm
log2 = algorithm.apply(net, im, fm)
def test_tree_generation(self):
from pm4py.algo.simulation.tree_generator import algorithm as tree_simulator
tree1 = tree_simulator.apply(variant=tree_simulator.Variants.BASIC)
tree2 = tree_simulator.apply(variant=tree_simulator.Variants.PTANDLOGGENERATOR)
def test_alpha_miner_log(self):
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
from pm4py.algo.discovery.alpha import algorithm as alpha_miner
net1, im1, fm1 = alpha_miner.apply(log, variant=alpha_miner.Variants.ALPHA_VERSION_CLASSIC)
net2, im2, fm2 = alpha_miner.apply(log, variant=alpha_miner.Variants.ALPHA_VERSION_PLUS)
from pm4py.algo.discovery.dfg import algorithm as dfg_discovery
dfg = dfg_discovery.apply(log)
net3, im3, fm3 = alpha_miner.apply_dfg(dfg, variant=alpha_miner.Variants.ALPHA_VERSION_CLASSIC)
def test_alpha_miner_dataframe(self):
df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv"))
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
from pm4py.algo.discovery.alpha import algorithm as alpha_miner
net, im, fm = alpha_miner.apply(df, variant=alpha_miner.Variants.ALPHA_VERSION_CLASSIC)
def test_tsystem(self):
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
from pm4py.algo.discovery.transition_system import algorithm as ts_system
tsystem = ts_system.apply(log, variant=ts_system.Variants.VIEW_BASED)
def test_inductive_miner(self):
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
from pm4py.algo.discovery.inductive import algorithm as inductive_miner
process_tree = inductive_miner.apply(log)
net, im, fm = process_tree_converter.apply(process_tree)
def test_performance_spectrum(self):
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
from pm4py.algo.discovery.performance_spectrum import algorithm as pspectrum
ps = pspectrum.apply(log, ["register request", "decide"])
df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv"))
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
ps = pspectrum.apply(df, ["register request", "decide"])
if __name__ == "__main__":
unittest.main()