Spaces:
Sleeping
Sleeping
import os | |
import unittest | |
import importlib.util | |
from pm4py.objects.log.importer.xes import importer as xes_importer | |
from pm4py.objects.log.util import get_class_representation | |
from pm4py.algo.transformation.log_to_features import algorithm as log_to_features | |
class DecisionTreeTest(unittest.TestCase): | |
def test_decisiontree_evattrvalue(self): | |
if importlib.util.find_spec("sklearn"): | |
from pm4py.util import ml_utils | |
from pm4py.visualization.decisiontree import visualizer as dt_vis | |
# to avoid static method warnings in tests, | |
# that by construction of the unittest package have to be expressed in such way | |
self.dummy_variable = "dummy_value" | |
log_path = os.path.join("input_data", "roadtraffic50traces.xes") | |
log = xes_importer.apply(log_path) | |
data, feature_names = log_to_features.apply(log, variant=log_to_features.Variants.TRACE_BASED, | |
parameters={"str_tr_attr": [], "str_ev_attr": ["concept:name"], | |
"num_tr_attr": [], "num_ev_attr": ["amount"]}) | |
target, classes = get_class_representation.get_class_representation_by_str_ev_attr_value_value(log, | |
"concept:name") | |
clf = ml_utils.DecisionTreeClassifier(max_depth=7) | |
clf.fit(data, target) | |
gviz = dt_vis.apply(clf, feature_names, classes, | |
parameters={dt_vis.Variants.CLASSIC.value.Parameters.FORMAT: "svg"}) | |
del gviz | |
def test_decisiontree_traceduration(self): | |
if importlib.util.find_spec("sklearn"): | |
from pm4py.util import ml_utils | |
from pm4py.visualization.decisiontree import visualizer as dt_vis | |
# to avoid static method warnings in tests, | |
# that by construction of the unittest package have to be expressed in such way | |
self.dummy_variable = "dummy_value" | |
log_path = os.path.join("input_data", "roadtraffic50traces.xes") | |
log = xes_importer.apply(log_path) | |
data, feature_names = log_to_features.apply(log, variant=log_to_features.Variants.TRACE_BASED, | |
parameters={"str_tr_attr": [], "str_ev_attr": ["concept:name"], | |
"num_tr_attr": [], "num_ev_attr": ["amount"]}) | |
target, classes = get_class_representation.get_class_representation_by_trace_duration(log, 2 * 8640000) | |
clf = ml_utils.DecisionTreeClassifier(max_depth=7) | |
clf.fit(data, target) | |
gviz = dt_vis.apply(clf, feature_names, classes, | |
parameters={dt_vis.Variants.CLASSIC.value.Parameters.FORMAT: "svg"}) | |
del gviz | |
if __name__ == "__main__": | |
unittest.main() | |