process_mining / pm4py /tests /other_tests.py
linpershey's picture
Add 'pm4py/' from commit '80970016c5e1e79af7c37df0dd88e17587fe7bcf'
b4ba3ec
raw
history blame
22.8 kB
import os
import unittest
import importlib.util
from pm4py.algo.discovery.log_skeleton import algorithm as lsk_alg
from pm4py.algo.conformance.log_skeleton import algorithm as lsk_conf_alg
from pm4py.objects.process_tree.importer import importer as ptree_importer
from pm4py.objects.process_tree.exporter import exporter as ptree_exporter
from pm4py.algo.discovery.performance_spectrum.variants import log as log_pspectrum, dataframe as df_pspectrum
from pm4py.objects.dfg.importer import importer as dfg_importer
from pm4py.objects.dfg.exporter import exporter as dfg_exporter
from pm4py.algo.discovery.dfg import algorithm as dfg_discovery
from pm4py.statistics.start_activities.log import get as start_activities
from pm4py.statistics.end_activities.log import get as end_activities
from pm4py.objects.log.importer.xes import importer as xes_importer
from pm4py.algo.discovery.inductive import algorithm as inductive_miner
from pm4py.statistics.variants.log import get as variants_get
from pm4py.algo.simulation.playout.petri_net import algorithm
from pm4py.objects.conversion.log import converter
from pm4py.objects.log.util import dataframe_utils
from pm4py.util import constants, pandas_utils
from pm4py.objects.conversion.process_tree import converter as process_tree_converter
class OtherPartsTests(unittest.TestCase):
def test_emd_1(self):
if importlib.util.find_spec("pyemd"):
from pm4py.algo.evaluation.earth_mover_distance import algorithm as earth_mover_distance
M = {("a", "b", "d", "e"): 0.49, ("a", "d", "b", "e"): 0.49, ("a", "c", "d", "e"): 0.01,
("a", "d", "c", "e"): 0.01}
L1 = {("a", "b", "d", "e"): 0.49, ("a", "d", "b", "e"): 0.49, ("a", "c", "d", "e"): 0.01,
("a", "d", "c", "e"): 0.01}
earth_mover_distance.apply(M, L1)
def test_emd_2(self):
if importlib.util.find_spec("pyemd"):
from pm4py.algo.evaluation.earth_mover_distance import algorithm as earth_mover_distance
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
lang_log = variants_get.get_language(log)
process_tree = inductive_miner.apply(log)
net1, im1, fm1 = process_tree_converter.apply(process_tree)
lang_model1 = variants_get.get_language(
algorithm.apply(net1, im1, fm1, variant=algorithm.Variants.STOCHASTIC_PLAYOUT,
parameters={algorithm.Variants.STOCHASTIC_PLAYOUT.value.Parameters.LOG: log}))
emd = earth_mover_distance.apply(lang_model1, lang_log)
def test_importing_dfg(self):
dfg, sa, ea = dfg_importer.apply(os.path.join("input_data", "running-example.dfg"))
def test_exporting_dfg(self):
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
dfg = dfg_discovery.apply(log)
dfg_exporter.apply(dfg, os.path.join("test_output_data", "running-example.dfg"))
dfg, sa, ea = dfg_importer.apply(os.path.join("test_output_data", "running-example.dfg"))
os.remove(os.path.join("test_output_data", "running-example.dfg"))
def test_exporting_dfg_with_sa_ea(self):
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
dfg = dfg_discovery.apply(log)
sa = start_activities.get_start_activities(log)
ea = end_activities.get_end_activities(log)
dfg_exporter.apply(dfg, os.path.join("test_output_data", "running-example.dfg"),
parameters={dfg_exporter.Variants.CLASSIC.value.Parameters.START_ACTIVITIES: sa,
dfg_exporter.Variants.CLASSIC.value.Parameters.END_ACTIVITIES: ea})
dfg, sa, ea = dfg_importer.apply(os.path.join("test_output_data", "running-example.dfg"))
os.remove(os.path.join("test_output_data", "running-example.dfg"))
def test_log_skeleton(self):
log = xes_importer.apply(os.path.join("input_data", "receipt.xes"))
skeleton = lsk_alg.apply(log)
conf_res = lsk_conf_alg.apply(log, skeleton)
def test_performance_spectrum_log(self):
log = xes_importer.apply(os.path.join("input_data", "receipt.xes"))
pspectr = log_pspectrum.apply(log, ["T02 Check confirmation of receipt", "T03 Adjust confirmation of receipt"],
1000, {})
def test_performance_spectrum_df(self):
df = pandas_utils.read_csv(os.path.join("input_data", "receipt.csv"))
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
pspectr = df_pspectrum.apply(df, ["T02 Check confirmation of receipt", "T03 Adjust confirmation of receipt"],
1000, {})
def test_alignment(self):
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
from pm4py.algo.discovery.alpha import algorithm as alpha_miner
net, im, fm = alpha_miner.apply(log)
from pm4py.algo.conformance.alignments.petri_net import algorithm as alignments
aligned_traces = alignments.apply(log, net, im, fm, variant=alignments.Variants.VERSION_STATE_EQUATION_A_STAR)
aligned_traces = alignments.apply(log, net, im, fm, variant=alignments.Variants.VERSION_DIJKSTRA_NO_HEURISTICS)
def test_import_export_ptml(self):
tree = ptree_importer.apply(os.path.join("input_data", "running-example.ptml"))
ptree_exporter.apply(tree, os.path.join("test_output_data", "running-example2.ptml"))
os.remove(os.path.join("test_output_data", "running-example2.ptml"))
def test_footprints_net(self):
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
from pm4py.algo.discovery.alpha import algorithm as alpha_miner
net, im, fm = alpha_miner.apply(log)
from pm4py.algo.discovery.footprints import algorithm as footprints_discovery
fp_entire_log = footprints_discovery.apply(log, variant=footprints_discovery.Variants.ENTIRE_EVENT_LOG)
fp_trace_trace = footprints_discovery.apply(log)
fp_net = footprints_discovery.apply(net, im)
from pm4py.algo.conformance.footprints import algorithm as footprints_conformance
conf1 = footprints_conformance.apply(fp_entire_log, fp_net)
conf2 = footprints_conformance.apply(fp_trace_trace, fp_net)
conf3 = footprints_conformance.apply(fp_entire_log, fp_net,
variant=footprints_conformance.Variants.LOG_EXTENSIVE)
conf4 = footprints_conformance.apply(fp_trace_trace, fp_net,
variant=footprints_conformance.Variants.TRACE_EXTENSIVE)
def test_footprints_tree(self):
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
from pm4py.algo.discovery.inductive import algorithm as inductive_miner
tree = inductive_miner.apply(log)
from pm4py.algo.discovery.footprints import algorithm as footprints_discovery
fp_entire_log = footprints_discovery.apply(log, variant=footprints_discovery.Variants.ENTIRE_EVENT_LOG)
fp_trace_trace = footprints_discovery.apply(log)
fp_tree = footprints_discovery.apply(tree)
from pm4py.algo.conformance.footprints import algorithm as footprints_conformance
conf1 = footprints_conformance.apply(fp_entire_log, fp_tree)
conf2 = footprints_conformance.apply(fp_trace_trace, fp_tree)
conf3 = footprints_conformance.apply(fp_entire_log, fp_tree,
variant=footprints_conformance.Variants.LOG_EXTENSIVE)
conf4 = footprints_conformance.apply(fp_trace_trace, fp_tree,
variant=footprints_conformance.Variants.TRACE_EXTENSIVE)
def test_footprints_tree_df(self):
df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv"))
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
from pm4py.algo.discovery.inductive import algorithm as inductive_miner
log = converter.apply(df, variant=converter.Variants.TO_EVENT_LOG)
tree = inductive_miner.apply(log)
from pm4py.algo.discovery.footprints import algorithm as footprints_discovery
fp_df = footprints_discovery.apply(df)
fp_tree = footprints_discovery.apply(tree)
from pm4py.algo.conformance.footprints import algorithm as footprints_conformance
conf = footprints_conformance.apply(fp_df, fp_tree)
def test_conversion_pn_to_pt(self):
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
from pm4py.algo.discovery.alpha import algorithm as alpha_miner
net, im, fm = alpha_miner.apply(log)
from pm4py.objects.conversion.wf_net import converter as wf_net_converter
tree = wf_net_converter.apply(net, im, fm, variant=wf_net_converter.Variants.TO_PROCESS_TREE)
def test_playout_tree_basic(self):
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
from pm4py.algo.discovery.inductive import algorithm as inductive_miner
tree = inductive_miner.apply(log)
from pm4py.algo.simulation.playout.process_tree import algorithm as tree_playout
new_log = tree_playout.apply(tree)
def test_playout_tree_extensive(self):
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
from pm4py.algo.discovery.inductive import algorithm as inductive_miner
tree = inductive_miner.apply(log)
from pm4py.algo.simulation.playout.process_tree import algorithm as tree_playout
new_log = tree_playout.apply(tree, variant=tree_playout.Variants.EXTENSIVE)
def test_service_time_xes(self):
log = xes_importer.apply(os.path.join("input_data", "interval_event_log.xes"))
from pm4py.statistics.service_time.log import get
soj_time = get.apply(log, parameters={get.Parameters.START_TIMESTAMP_KEY: "start_timestamp"})
def test_service_time_pandas(self):
dataframe = pandas_utils.read_csv(os.path.join("input_data", "interval_event_log.csv"))
from pm4py.objects.log.util import dataframe_utils
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
from pm4py.statistics.service_time.pandas import get
soj_time = get.apply(dataframe, parameters={get.Parameters.START_TIMESTAMP_KEY: "start_timestamp"})
def test_concurrent_activities_xes(self):
log = xes_importer.apply(os.path.join("input_data", "interval_event_log.xes"))
from pm4py.statistics.concurrent_activities.log import get
conc_act = get.apply(log, parameters={get.Parameters.START_TIMESTAMP_KEY: "start_timestamp"})
def test_concurrent_activities_pandas(self):
dataframe = pandas_utils.read_csv(os.path.join("input_data", "interval_event_log.csv"))
from pm4py.objects.log.util import dataframe_utils
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
from pm4py.statistics.concurrent_activities.pandas import get
conc_act = get.apply(dataframe, parameters={get.Parameters.START_TIMESTAMP_KEY: "start_timestamp"})
def test_efg_xes(self):
log = xes_importer.apply(os.path.join("input_data", "interval_event_log.xes"))
from pm4py.statistics.eventually_follows.log import get
efg = get.apply(log, parameters={get.Parameters.START_TIMESTAMP_KEY: "start_timestamp"})
def test_efg_pandas(self):
dataframe = pandas_utils.read_csv(os.path.join("input_data", "interval_event_log.csv"))
from pm4py.objects.log.util import dataframe_utils
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
from pm4py.statistics.eventually_follows.pandas import get
efg = get.apply(dataframe, parameters={get.Parameters.START_TIMESTAMP_KEY: "start_timestamp"})
def test_dfg_playout(self):
import pm4py
from pm4py.algo.simulation.playout.dfg import algorithm as dfg_playout
log = pm4py.read_xes(os.path.join("input_data", "running-example.xes"))
dfg, sa, ea = pm4py.discover_dfg(log)
dfg_playout.apply(dfg, sa, ea)
def test_dfg_align(self):
import pm4py
from pm4py.algo.filtering.dfg import dfg_filtering
from pm4py.algo.conformance.alignments.dfg import algorithm as dfg_alignment
log = pm4py.read_xes(os.path.join("input_data", "running-example.xes"))
dfg, sa, ea = pm4py.discover_dfg(log)
act_count = pm4py.get_event_attribute_values(log, "concept:name")
dfg, sa, ea, act_count = dfg_filtering.filter_dfg_on_activities_percentage(dfg, sa, ea, act_count, 0.5)
dfg, sa, ea, act_count = dfg_filtering.filter_dfg_on_paths_percentage(dfg, sa, ea, act_count, 0.5)
aligned_traces = dfg_alignment.apply(log, dfg, sa, ea)
def test_insert_idx_in_trace(self):
df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv"))
df = pandas_utils.insert_ev_in_tr_index(df)
def test_automatic_feature_extraction(self):
df = pandas_utils.read_csv(os.path.join("input_data", "receipt.csv"))
fea_df = dataframe_utils.automatic_feature_extraction_df(df)
def test_log_to_trie(self):
import pm4py
from pm4py.algo.transformation.log_to_trie import algorithm as log_to_trie
log = pm4py.read_xes(os.path.join("input_data", "running-example.xes"))
trie = log_to_trie.apply(log)
def test_minimum_self_distance(self):
import pm4py
from pm4py.algo.discovery.minimum_self_distance import algorithm as minimum_self_distance
log = pm4py.read_xes(os.path.join("input_data", "running-example.xes"))
msd = minimum_self_distance.apply(log)
def test_projection_univariate_log(self):
import pm4py
from pm4py.util.compression import util as compression_util
log = pm4py.read_xes(os.path.join("input_data", "receipt.xes"))
cl = compression_util.project_univariate(log, "concept:name")
# just verify that the set is non-empty
self.assertTrue(compression_util.get_start_activities(cl))
self.assertTrue(compression_util.get_end_activities(cl))
self.assertTrue(compression_util.get_alphabet(cl))
self.assertTrue(compression_util.discover_dfg(cl))
self.assertTrue(compression_util.get_variants(cl))
def test_projection_univariate_df(self):
from pm4py.util.compression import util as compression_util
dataframe = pandas_utils.read_csv(os.path.join("input_data", "receipt.csv"))
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["time:timestamp"])
cl = compression_util.project_univariate(dataframe, "concept:name")
# just verify that the set is non-empty
self.assertTrue(compression_util.get_start_activities(cl))
self.assertTrue(compression_util.get_end_activities(cl))
self.assertTrue(compression_util.get_alphabet(cl))
self.assertTrue(compression_util.discover_dfg(cl))
self.assertTrue(compression_util.get_variants(cl))
def test_compression_univariate_log(self):
import pm4py
from pm4py.util.compression import util as compression_util
log = pm4py.read_xes(os.path.join("input_data", "receipt.xes"))
cl, lookup = compression_util.compress_univariate(log, "concept:name")
# just verify that the set is non-empty
self.assertTrue(compression_util.get_start_activities(cl))
self.assertTrue(compression_util.get_end_activities(cl))
self.assertTrue(compression_util.get_alphabet(cl))
self.assertTrue(compression_util.discover_dfg(cl))
self.assertTrue(compression_util.get_variants(cl))
def test_compression_univariate_df(self):
from pm4py.util.compression import util as compression_util
dataframe = pandas_utils.read_csv(os.path.join("input_data", "receipt.csv"))
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["time:timestamp"])
cl, lookup = compression_util.compress_univariate(dataframe, "concept:name")
# just verify that the set is non-empty
self.assertTrue(compression_util.get_start_activities(cl))
self.assertTrue(compression_util.get_end_activities(cl))
self.assertTrue(compression_util.get_alphabet(cl))
self.assertTrue(compression_util.discover_dfg(cl))
self.assertTrue(compression_util.get_variants(cl))
def test_compression_multivariate_log(self):
import pm4py
from pm4py.util.compression import util as compression_util
log = pm4py.read_xes(os.path.join("input_data", "receipt.xes"))
cl, lookup = compression_util.compress_multivariate(log, ["concept:name", "org:resource"])
# just verify that the set is non-empty
self.assertTrue(compression_util.get_start_activities(cl))
self.assertTrue(compression_util.get_end_activities(cl))
self.assertTrue(compression_util.get_alphabet(cl))
self.assertTrue(compression_util.discover_dfg(cl))
self.assertTrue(compression_util.get_variants(cl))
def test_compression_multivariate_df(self):
from pm4py.util.compression import util as compression_util
dataframe = pandas_utils.read_csv(os.path.join("input_data", "receipt.csv"))
dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT, timest_columns=["time:timestamp"])
cl, lookup = compression_util.compress_multivariate(dataframe, ["concept:name", "org:resource"])
# just verify that the set is non-empty
self.assertTrue(compression_util.get_start_activities(cl))
self.assertTrue(compression_util.get_end_activities(cl))
self.assertTrue(compression_util.get_alphabet(cl))
self.assertTrue(compression_util.discover_dfg(cl))
self.assertTrue(compression_util.get_variants(cl))
def test_log_to_target_rem_time(self):
import pm4py
from pm4py.algo.transformation.log_to_target import algorithm as log_to_target
log = pm4py.read_xes("input_data/running-example.xes")
rem_time_target, classes = log_to_target.apply(log, variant=log_to_target.Variants.REMAINING_TIME)
def test_log_to_target_next_time(self):
import pm4py
from pm4py.algo.transformation.log_to_target import algorithm as log_to_target
log = pm4py.read_xes("input_data/running-example.xes")
next_time_target, classes = log_to_target.apply(log, variant=log_to_target.Variants.NEXT_TIME)
def test_log_to_target_next_activity(self):
import pm4py
from pm4py.algo.transformation.log_to_target import algorithm as log_to_target
log = pm4py.read_xes("input_data/running-example.xes")
next_activity_target, next_activities = log_to_target.apply(log, variant=log_to_target.Variants.NEXT_ACTIVITY)
def test_ocel_split_cc_non_simpl_interface(self):
import pm4py
ocel = pm4py.read_ocel("input_data/ocel/example_log.jsonocel")
from pm4py.algo.transformation.ocel.split_ocel import algorithm as split_ocel
res = split_ocel.apply(ocel, variant=split_ocel.Variants.CONNECTED_COMPONENTS)
def test_ocel_split_ancestors_non_simpl_interface(self):
import pm4py
ocel = pm4py.read_ocel("input_data/ocel/example_log.jsonocel")
from pm4py.algo.transformation.ocel.split_ocel import algorithm as split_ocel
res = split_ocel.apply(ocel, parameters={"object_type": "order"}, variant=split_ocel.Variants.ANCESTORS_DESCENDANTS)
def test_ocel_object_features_non_simpl_interface(self):
import pm4py
ocel = pm4py.read_ocel("input_data/ocel/example_log.jsonocel")
from pm4py.algo.transformation.ocel.features.objects import algorithm as ocel_fea
res = ocel_fea.apply(ocel)
def test_ocel_event_features_non_simpl_interface(self):
import pm4py
ocel = pm4py.read_ocel("input_data/ocel/example_log.jsonocel")
from pm4py.algo.transformation.ocel.features.events import algorithm as ocel_fea
res = ocel_fea.apply(ocel)
def test_ocel_event_object_features_non_simpl_interface(self):
import pm4py
ocel = pm4py.read_ocel("input_data/ocel/example_log.jsonocel")
from pm4py.algo.transformation.ocel.features.events_objects import algorithm as ocel_fea
res = ocel_fea.apply(ocel)
def test_ocel_interaction_graph_non_simpl_interface(self):
import pm4py
ocel = pm4py.read_ocel("input_data/ocel/example_log.jsonocel")
from pm4py.algo.transformation.ocel.graphs import object_interaction_graph
object_interaction_graph.apply(ocel)
def test_ocel_descendants_graph_non_simpl_interface(self):
import pm4py
ocel = pm4py.read_ocel("input_data/ocel/example_log.jsonocel")
from pm4py.algo.transformation.ocel.graphs import object_descendants_graph
object_descendants_graph.apply(ocel)
def test_ocel_inheritance_graph_non_simpl_interface(self):
import pm4py
ocel = pm4py.read_ocel("input_data/ocel/example_log.jsonocel")
from pm4py.algo.transformation.ocel.graphs import object_inheritance_graph
object_inheritance_graph.apply(ocel)
def test_ocel_cobirth_graph_non_simpl_interface(self):
import pm4py
ocel = pm4py.read_ocel("input_data/ocel/example_log.jsonocel")
from pm4py.algo.transformation.ocel.graphs import object_cobirth_graph
object_cobirth_graph.apply(ocel)
def test_ocel_codeath_graph_non_simpl_interface(self):
import pm4py
ocel = pm4py.read_ocel("input_data/ocel/example_log.jsonocel")
from pm4py.algo.transformation.ocel.graphs import object_codeath_graph
object_codeath_graph.apply(ocel)
def test_ocel_description_non_simpl_interface(self):
import pm4py
ocel = pm4py.read_ocel("input_data/ocel/example_log.jsonocel")
from pm4py.algo.transformation.ocel.description.variants import variant1
variant1.apply(ocel)
if __name__ == "__main__":
unittest.main()