process_mining / pm4py /tests /main_fac_test.py
linpershey's picture
Add 'pm4py/' from commit '80970016c5e1e79af7c37df0dd88e17587fe7bcf'
b4ba3ec
import os
import unittest
from pm4py.algo.conformance.alignments.petri_net import algorithm as align_alg
from pm4py.algo.conformance.tokenreplay import algorithm as tr_alg
from pm4py.algo.discovery.alpha import algorithm as alpha_miner
from pm4py.algo.discovery.dfg import algorithm as dfg_mining
from pm4py.algo.discovery.heuristics import algorithm as heuristics_miner
from pm4py.algo.discovery.inductive import algorithm as inductive_miner
from pm4py.algo.discovery.transition_system import algorithm as ts_disc
from pm4py.algo.evaluation import algorithm as eval_alg
from pm4py.algo.evaluation.generalization import algorithm as generalization
from pm4py.algo.evaluation.precision import algorithm as precision_evaluator
from pm4py.algo.evaluation.replay_fitness import algorithm as rp_fit
from pm4py.algo.evaluation.simplicity import algorithm as simplicity
from pm4py.objects.conversion.log import converter as log_conversion
from pm4py.objects.log.exporter.xes import exporter as xes_exporter
from pm4py.objects.log.importer.xes import importer as xes_importer
from pm4py.objects.log.util import dataframe_utils
from pm4py.util import constants, pandas_utils
from pm4py.objects.conversion.process_tree import converter as process_tree_converter
class MainFactoriesTest(unittest.TestCase):
def test_nonstandard_exporter(self):
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
xes_exporter.apply(log, os.path.join("test_output_data", "running-example.xes"),
variant=xes_exporter.Variants.LINE_BY_LINE)
os.remove(os.path.join("test_output_data", "running-example.xes"))
def test_alphaminer_log(self):
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
net, im, fm = alpha_miner.apply(log)
aligned_traces_tr = tr_alg.apply(log, net, im, fm)
aligned_traces_alignments = align_alg.apply(log, net, im, fm)
evaluation = eval_alg.apply(log, net, im, fm)
fitness = rp_fit.apply(log, net, im, fm)
precision = precision_evaluator.apply(log, net, im, fm)
gen = generalization.apply(log, net, im, fm)
sim = simplicity.apply(net)
def test_memory_efficient_iterparse(self):
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"),
variant=xes_importer.Variants.ITERPARSE_MEM_COMPRESSED)
def test_alphaminer_stream(self):
df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv"))
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
stream = log_conversion.apply(df, variant=log_conversion.TO_EVENT_STREAM)
net, im, fm = alpha_miner.apply(stream)
aligned_traces_tr = tr_alg.apply(stream, net, im, fm)
aligned_traces_alignments = align_alg.apply(stream, net, im, fm)
evaluation = eval_alg.apply(stream, net, im, fm)
fitness = rp_fit.apply(stream, net, im, fm)
precision = precision_evaluator.apply(stream, net, im, fm)
gen = generalization.apply(stream, net, im, fm)
sim = simplicity.apply(net)
def test_alphaminer_df(self):
log = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv"))
log = dataframe_utils.convert_timestamp_columns_in_df(log, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
net, im, fm = alpha_miner.apply(log)
aligned_traces_tr = tr_alg.apply(log, net, im, fm)
aligned_traces_alignments = align_alg.apply(log, net, im, fm)
evaluation = eval_alg.apply(log, net, im, fm)
fitness = rp_fit.apply(log, net, im, fm)
precision = precision_evaluator.apply(log, net, im, fm)
gen = generalization.apply(log, net, im, fm)
sim = simplicity.apply(net)
def test_inductiveminer_log(self):
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
process_tree = inductive_miner.apply(log)
net, im, fm = process_tree_converter.apply(process_tree)
aligned_traces_tr = tr_alg.apply(log, net, im, fm)
aligned_traces_alignments = align_alg.apply(log, net, im, fm)
evaluation = eval_alg.apply(log, net, im, fm)
fitness = rp_fit.apply(log, net, im, fm)
precision = precision_evaluator.apply(log, net, im, fm)
gen = generalization.apply(log, net, im, fm)
sim = simplicity.apply(net)
def test_inductiveminer_df(self):
log = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv"))
log = dataframe_utils.convert_timestamp_columns_in_df(log, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
process_tree = inductive_miner.apply(log)
net, im, fm = process_tree_converter.apply(process_tree)
aligned_traces_tr = tr_alg.apply(log, net, im, fm)
aligned_traces_alignments = align_alg.apply(log, net, im, fm)
evaluation = eval_alg.apply(log, net, im, fm)
fitness = rp_fit.apply(log, net, im, fm)
precision = precision_evaluator.apply(log, net, im, fm)
gen = generalization.apply(log, net, im, fm)
sim = simplicity.apply(net)
def test_heu_log(self):
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
net, im, fm = heuristics_miner.apply(log)
aligned_traces_tr = tr_alg.apply(log, net, im, fm)
aligned_traces_alignments = align_alg.apply(log, net, im, fm)
evaluation = eval_alg.apply(log, net, im, fm)
fitness = rp_fit.apply(log, net, im, fm)
precision = precision_evaluator.apply(log, net, im, fm)
gen = generalization.apply(log, net, im, fm)
sim = simplicity.apply(net)
def test_heu_stream(self):
df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv"))
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
stream = log_conversion.apply(df, variant=log_conversion.TO_EVENT_STREAM)
net, im, fm = heuristics_miner.apply(stream)
aligned_traces_tr = tr_alg.apply(stream, net, im, fm)
aligned_traces_alignments = align_alg.apply(stream, net, im, fm)
evaluation = eval_alg.apply(stream, net, im, fm)
fitness = rp_fit.apply(stream, net, im, fm)
precision = precision_evaluator.apply(stream, net, im, fm)
gen = generalization.apply(stream, net, im, fm)
sim = simplicity.apply(net)
def test_heu_df(self):
log = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv"))
log = dataframe_utils.convert_timestamp_columns_in_df(log, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
net, im, fm = heuristics_miner.apply(log)
aligned_traces_tr = tr_alg.apply(log, net, im, fm)
aligned_traces_alignments = align_alg.apply(log, net, im, fm)
evaluation = eval_alg.apply(log, net, im, fm)
fitness = rp_fit.apply(log, net, im, fm)
precision = precision_evaluator.apply(log, net, im, fm)
gen = generalization.apply(log, net, im, fm)
sim = simplicity.apply(net)
def test_dfg_log(self):
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
dfg = dfg_mining.apply(log)
def test_dfg_stream(self):
df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv"))
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
stream = log_conversion.apply(df, variant=log_conversion.TO_EVENT_STREAM)
dfg = dfg_mining.apply(stream)
def test_dfg_df(self):
df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv"))
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
dfg = dfg_mining.apply(df)
def test_ts_log(self):
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
ts = ts_disc.apply(log)
def test_ts_stream(self):
df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv"))
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
stream = log_conversion.apply(df, variant=log_conversion.TO_EVENT_STREAM)
ts = ts_disc.apply(stream)
def test_ts_df(self):
df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv"))
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
ts = ts_disc.apply(df)
def test_csvimp_xesexp(self):
df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv"))
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
log0 = log_conversion.apply(df, variant=log_conversion.TO_EVENT_STREAM)
log = log_conversion.apply(log0, variant=log_conversion.TO_EVENT_LOG)
stream = log_conversion.apply(log0, variant=log_conversion.TO_EVENT_STREAM)
df = log_conversion.apply(log0, variant=log_conversion.TO_DATA_FRAME)
xes_exporter.apply(log, "ru.xes")
xes_exporter.apply(stream, "ru.xes")
xes_exporter.apply(df, "ru.xes")
os.remove('ru.xes')
def test_xesimp_xesexp(self):
log0 = xes_importer.apply(os.path.join("input_data", "running-example.xes"))
log = log_conversion.apply(log0, variant=log_conversion.TO_EVENT_LOG)
stream = log_conversion.apply(log0, variant=log_conversion.TO_EVENT_STREAM)
df = log_conversion.apply(log0, variant=log_conversion.TO_DATA_FRAME)
xes_exporter.apply(log, "ru.xes")
xes_exporter.apply(stream, "ru.xes")
xes_exporter.apply(df, "ru.xes")
os.remove('ru.xes')
def test_pdimp_xesexp(self):
log0 = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv"))
log0 = dataframe_utils.convert_timestamp_columns_in_df(log0, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT)
log = log_conversion.apply(log0, variant=log_conversion.TO_EVENT_LOG)
stream = log_conversion.apply(log0, variant=log_conversion.TO_EVENT_STREAM)
df = log_conversion.apply(log0, variant=log_conversion.TO_DATA_FRAME)
xes_exporter.apply(log, "ru.xes")
xes_exporter.apply(stream, "ru.xes")
xes_exporter.apply(df, "ru.xes")
os.remove('ru.xes')
if __name__ == "__main__":
unittest.main()