Spaces:
Sleeping
Sleeping
kota
commited on
Commit
·
1089f07
0
Parent(s):
initial commit
Browse files- .gitattributes +37 -0
- .gitignore +170 -0
- .gitmodules +0 -0
- README.md +11 -0
- app.py +106 -0
- gapp.py +160 -0
- model.py +216 -0
- packages.txt +2 -0
- process_map.ipynb +0 -0
- requirements.txt +176 -0
- sapp.py +24 -0
.gitattributes
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.sqlite filter=lfs diff=lfs merge=lfs -text
|
37 |
+
*.xes.gz filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
pip-wheel-metadata/
|
24 |
+
share/python-wheels/
|
25 |
+
*.egg-info/
|
26 |
+
.installed.cfg
|
27 |
+
*.egg
|
28 |
+
MANIFEST
|
29 |
+
|
30 |
+
# PyInstaller
|
31 |
+
# Usually these files are written by a python script from a template
|
32 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
33 |
+
*.manifest
|
34 |
+
*.spec
|
35 |
+
|
36 |
+
# Installer logs
|
37 |
+
pip-log.txt
|
38 |
+
pip-delete-this-directory.txt
|
39 |
+
|
40 |
+
# Unit test / coverage reports
|
41 |
+
htmlcov/
|
42 |
+
.tox/
|
43 |
+
.nox/
|
44 |
+
.coverage
|
45 |
+
.coverage.*
|
46 |
+
.cache
|
47 |
+
nosetests.xml
|
48 |
+
coverage.xml
|
49 |
+
*.cover
|
50 |
+
*.py,cover
|
51 |
+
.hypothesis/
|
52 |
+
.pytest_cache/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
target/
|
76 |
+
|
77 |
+
# Jupyter Notebook
|
78 |
+
.ipynb_checkpoints
|
79 |
+
|
80 |
+
# IPython
|
81 |
+
profile_default/
|
82 |
+
ipython_config.py
|
83 |
+
|
84 |
+
# pyenv
|
85 |
+
.python-version
|
86 |
+
|
87 |
+
# pipenv
|
88 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
89 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
90 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
91 |
+
# install all needed dependencies.
|
92 |
+
#Pipfile.lock
|
93 |
+
|
94 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
95 |
+
__pypackages__/
|
96 |
+
|
97 |
+
# Celery stuff
|
98 |
+
celerybeat-schedule
|
99 |
+
celerybeat.pid
|
100 |
+
|
101 |
+
# SageMath parsed files
|
102 |
+
*.sage.py
|
103 |
+
|
104 |
+
# Environments
|
105 |
+
.env
|
106 |
+
.venv
|
107 |
+
env/
|
108 |
+
venv/
|
109 |
+
ENV/
|
110 |
+
env.bak/
|
111 |
+
venv.bak/
|
112 |
+
|
113 |
+
# Spyder project settings
|
114 |
+
.spyderproject
|
115 |
+
.spyproject
|
116 |
+
|
117 |
+
# Rope project settings
|
118 |
+
.ropeproject
|
119 |
+
|
120 |
+
# mkdocs documentation
|
121 |
+
/site
|
122 |
+
|
123 |
+
# mypy
|
124 |
+
.mypy_cache/
|
125 |
+
.dmypy.json
|
126 |
+
dmypy.json
|
127 |
+
|
128 |
+
# Pyre type checker
|
129 |
+
.pyre/
|
130 |
+
|
131 |
+
# JetBrains
|
132 |
+
.idea
|
133 |
+
|
134 |
+
*.db
|
135 |
+
|
136 |
+
.DS_Store
|
137 |
+
|
138 |
+
vectorstore.pkl
|
139 |
+
langchain.readthedocs.io/
|
140 |
+
|
141 |
+
__pycache__/
|
142 |
+
.idea/
|
143 |
+
.ipynb_checkpoints/
|
144 |
+
*.bin
|
145 |
+
*.exe
|
146 |
+
*.msi
|
147 |
+
output/*
|
148 |
+
trained_models/*
|
149 |
+
!trained_models/.gitkeep
|
150 |
+
pretrained_models/*
|
151 |
+
!pretrained_models/.gitkeep
|
152 |
+
!pretrained_models/embedding/
|
153 |
+
pretrained_models/embedding/*
|
154 |
+
!pretrained_models/embedding/.gitkeep
|
155 |
+
runs
|
156 |
+
numpy_files/
|
157 |
+
#log*
|
158 |
+
#tmp*
|
159 |
+
data/
|
160 |
+
!data/.gitkeep
|
161 |
+
output/
|
162 |
+
!output/.gitkeep
|
163 |
+
.env
|
164 |
+
*.env
|
165 |
+
|
166 |
+
clients/
|
167 |
+
!clients/.gitkeep
|
168 |
+
|
169 |
+
creds/
|
170 |
+
|
.gitmodules
ADDED
File without changes
|
README.md
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Process Mining
|
3 |
+
emoji: 🤗
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: green
|
6 |
+
python_version: '3.10'
|
7 |
+
sdk: gradio
|
8 |
+
sdk_version: 4.37.2
|
9 |
+
app_file: sapp.py
|
10 |
+
pinned: false
|
11 |
+
---
|
app.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dash
|
2 |
+
from dash import dcc, html
|
3 |
+
from dash.dependencies import Input, Output
|
4 |
+
import plotly.graph_objects as go
|
5 |
+
import networkx as nx
|
6 |
+
|
7 |
+
# Create a directed graph
|
8 |
+
G = nx.DiGraph()
|
9 |
+
|
10 |
+
# Add nodes
|
11 |
+
G.add_nodes_from([1, 2, 3, 4, 5, 6, 7, 8, 9])
|
12 |
+
|
13 |
+
# Add directed edges
|
14 |
+
G.add_edges_from([(1, 2), (1, 3), (2, 4), (3, 5), (1, 6), (4,7), (4,8),(5,7), (5,8), (7,9), (8,9), (6,9), (6,6)])
|
15 |
+
|
16 |
+
# Initialize the Dash app
|
17 |
+
app = dash.Dash(__name__)
|
18 |
+
|
19 |
+
app.layout = html.Div([
|
20 |
+
dcc.Dropdown(
|
21 |
+
id='node-dropdown',
|
22 |
+
options=[{'label': f'Node {i}', 'value': i} for i in G.nodes],
|
23 |
+
value=None,
|
24 |
+
placeholder="Select a node to filter"
|
25 |
+
),
|
26 |
+
dcc.Graph(id='network-graph')
|
27 |
+
])
|
28 |
+
|
29 |
+
@app.callback(
|
30 |
+
Output('network-graph', 'figure'),
|
31 |
+
Input('node-dropdown', 'value')
|
32 |
+
)
|
33 |
+
def update_graph(selected_node):
|
34 |
+
if selected_node is not None:
|
35 |
+
nodes_to_filter = [selected_node]
|
36 |
+
else:
|
37 |
+
nodes_to_filter = []
|
38 |
+
|
39 |
+
filtered_graph = filter_nodes(G, nodes_to_filter)
|
40 |
+
|
41 |
+
pos = nx.spring_layout(filtered_graph)
|
42 |
+
|
43 |
+
node_trace = go.Scatter(
|
44 |
+
x=[pos[n][0] for n in filtered_graph.nodes],
|
45 |
+
y=[pos[n][1] for n in filtered_graph.nodes],
|
46 |
+
text=list(filtered_graph.nodes),
|
47 |
+
mode='markers+text',
|
48 |
+
textposition='top center',
|
49 |
+
marker=dict(size=20, color='LightSkyBlue', line=dict(width=2))
|
50 |
+
)
|
51 |
+
|
52 |
+
edge_trace = go.Scatter(
|
53 |
+
x=(),
|
54 |
+
y=(),
|
55 |
+
line=dict(width=1.5, color='Gray'),
|
56 |
+
hoverinfo='none',
|
57 |
+
mode='lines'
|
58 |
+
)
|
59 |
+
|
60 |
+
annotations = []
|
61 |
+
for edge in filtered_graph.edges:
|
62 |
+
x0, y0 = pos[edge[0]]
|
63 |
+
x1, y1 = pos[edge[1]]
|
64 |
+
edge_trace['x'] += (x0, x1, None)
|
65 |
+
edge_trace['y'] += (y0, y1, None)
|
66 |
+
|
67 |
+
annotations.append(
|
68 |
+
dict(
|
69 |
+
ax=x0,
|
70 |
+
ay=y0,
|
71 |
+
axref='x',
|
72 |
+
ayref='y',
|
73 |
+
x=x1,
|
74 |
+
y=y1,
|
75 |
+
xref='x',
|
76 |
+
yref='y',
|
77 |
+
showarrow=True,
|
78 |
+
arrowhead=2,
|
79 |
+
arrowsize=1,
|
80 |
+
arrowwidth=2,
|
81 |
+
arrowcolor='Gray'
|
82 |
+
)
|
83 |
+
)
|
84 |
+
|
85 |
+
fig = go.Figure(data=[edge_trace, node_trace],
|
86 |
+
layout=go.Layout(
|
87 |
+
showlegend=False,
|
88 |
+
hovermode='closest',
|
89 |
+
margin=dict(b=0, l=0, r=0, t=0),
|
90 |
+
annotations=annotations,
|
91 |
+
xaxis=dict(showgrid=False, zeroline=False),
|
92 |
+
yaxis=dict(showgrid=False, zeroline=False)
|
93 |
+
))
|
94 |
+
|
95 |
+
return fig
|
96 |
+
|
97 |
+
def filter_nodes(graph, nodes_to_remove):
|
98 |
+
filtered_graph = graph.copy()
|
99 |
+
for node in nodes_to_remove:
|
100 |
+
if node in filtered_graph:
|
101 |
+
filtered_graph.remove_node(node)
|
102 |
+
return filtered_graph
|
103 |
+
|
104 |
+
if __name__ == '__main__':
|
105 |
+
app.run_server(debug=True, port=8050, host='0.0.0.0')
|
106 |
+
|
gapp.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import logging
|
3 |
+
from io import StringIO
|
4 |
+
from pathlib import Path
|
5 |
+
from collections import OrderedDict
|
6 |
+
|
7 |
+
import plotly.express as px
|
8 |
+
import gradio as gr
|
9 |
+
import pandas as pd
|
10 |
+
from dotenv import load_dotenv
|
11 |
+
# from PIL import Image
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
# import cv2
|
14 |
+
# import numpy as np
|
15 |
+
import plotly.graph_objects as go
|
16 |
+
import networkx as nx
|
17 |
+
|
18 |
+
from model import dfg2networkx, discover_process_map, discover_process_map_activities_connections, discover_process_map_variants, view_process_map
|
19 |
+
|
20 |
+
load_dotenv()
|
21 |
+
|
22 |
+
logger = logging.getLogger(__name__)
|
23 |
+
logger.setLevel(logging.DEBUG)
|
24 |
+
|
25 |
+
|
26 |
+
def get_data(temp_file, state: dict):
|
27 |
+
# print(f"temp_file: {temp_file}")
|
28 |
+
if isinstance(temp_file, str):
|
29 |
+
# df = pd.read_csv(StringIO(temp_file), parse_dates=[ "Start", "Finish"])
|
30 |
+
df = pd.read_csv(temp_file, sep=';', dtype={'case_id': str}, parse_dates = ['timestamp'])
|
31 |
+
df.loc[:, 'timestamp'] = pd.to_datetime(df['timestamp']) # format='%Y-%m-%d %H:%M:%S'
|
32 |
+
else:
|
33 |
+
# df = pd.read_csv(temp_file.name, ) # parse_dates=[ "Start", "Finish"]
|
34 |
+
df = pd.read_csv(temp_file.name, sep=';', dtype={'case_id': str}, parse_dates = ['timestamp'])
|
35 |
+
df.loc[:, 'timestamp'] = pd.to_datetime(df['timestamp'])
|
36 |
+
# logger.debug(df.head())
|
37 |
+
# logger.debug(df.dtypes)
|
38 |
+
state['df'] = df
|
39 |
+
return df, state
|
40 |
+
|
41 |
+
|
42 |
+
def get_stats(state: dict):
|
43 |
+
df = state.get('df', pd.DataFrame()).copy()
|
44 |
+
summary = pd.DataFrame({
|
45 |
+
"metric": ["資料筆數", "Case 數量", "Activity 數量", "起始時間", "結束時間"],
|
46 |
+
"value": [ df.shape[0], df['case_id'].nunique(), df['activity'].nunique(), df['timestamp'].min(), df['timestamp'].max() ]
|
47 |
+
})
|
48 |
+
case_stats = df.groupby(
|
49 |
+
by = ['case_id'], as_index=False
|
50 |
+
).agg(count = ('activity', len)).reset_index()
|
51 |
+
logger.debug(f"case stats: {case_stats}")
|
52 |
+
|
53 |
+
case_lead_time = df.groupby(
|
54 |
+
by = ['case_id'], as_index=False
|
55 |
+
).agg( duration = ('timestamp', lambda x: (x.max() - x.min()).total_seconds()//3600 )).reset_index()
|
56 |
+
|
57 |
+
def avg_duration(x):
|
58 |
+
return pd.Series({ "avg_duration": (x.timestamp.max() - x.timestamp.min()).total_seconds()//3600})
|
59 |
+
case_avg_duration = df.groupby(
|
60 |
+
by = ['case_id'], as_index=False
|
61 |
+
).apply(
|
62 |
+
avg_duration
|
63 |
+
)
|
64 |
+
|
65 |
+
logger.debug(f"case lead time: {case_lead_time}")
|
66 |
+
return (
|
67 |
+
summary,
|
68 |
+
gr.BarPlot( case_stats, x="case_id", y="count", title="Case Stats", tooltip = ["case_id", "count"], width=None),
|
69 |
+
gr.BarPlot( case_lead_time, x="case_id", y="duration", title="Case Lead Time", tooltip = ["case_id", "duration"], width=None),
|
70 |
+
gr.BarPlot( case_avg_duration, x="case_id", y="avg_duration", title="Case Average Duration", tooltip = ["case_id", "avg_duration"], width=None),
|
71 |
+
state
|
72 |
+
)
|
73 |
+
|
74 |
+
|
75 |
+
def get_process_map( state: dict = {}):
|
76 |
+
df = state.get('df', pd.DataFrame()).copy()
|
77 |
+
net, img = discover_process_map( df, type='petrinet')
|
78 |
+
return img, state
|
79 |
+
|
80 |
+
def get_process_map_variants( top_k: int = 1, state: dict = {}):
|
81 |
+
"""
|
82 |
+
"""
|
83 |
+
df = state.get('df', pd.DataFrame()).copy()
|
84 |
+
dfg, start_activities, end_activities = discover_process_map_variants( df, top_k, type='dfg')
|
85 |
+
top_variant_connections = OrderedDict(sorted(dfg.items(), key=lambda item: item[1], reverse=True))
|
86 |
+
state['top_variant_connections'] = top_variant_connections
|
87 |
+
if 'top_variant' not in state and top_k == 1:
|
88 |
+
state['top_variant'] = {'dfg': dfg, 'start_activities': start_activities, 'end_activities': end_activities}
|
89 |
+
nx_graph = dfg2networkx( dfg, start_activities, end_activities)
|
90 |
+
chart = view_process_map( nx_graph, process_type='dfg', layout_type='sfdp')
|
91 |
+
return chart, state
|
92 |
+
|
93 |
+
|
94 |
+
def get_process_map_activities_connections( activity_rank: int = 0, connection_rank: int = 0, state: dict = {}):
|
95 |
+
"""
|
96 |
+
"""
|
97 |
+
df = state.get('df', pd.DataFrame()).copy()
|
98 |
+
dfg, start_activities, end_activities = discover_process_map_activities_connections( df, activity_rank = activity_rank, connection_rank = connection_rank, state = state)
|
99 |
+
nx_graph = dfg2networkx( dfg, start_activities, end_activities)
|
100 |
+
chart = view_process_map( nx_graph, process_type='dfg', layout_type='sfdp')
|
101 |
+
return chart, state
|
102 |
+
|
103 |
+
|
104 |
+
## --- block --- ##
|
105 |
+
css = """
|
106 |
+
h1 {
|
107 |
+
text-align: center;
|
108 |
+
display:block;
|
109 |
+
}
|
110 |
+
"""
|
111 |
+
demo = gr.Blocks(css = css)
|
112 |
+
with demo:
|
113 |
+
gr.Markdown("# 🌟 Process Dicovery 🌟")
|
114 |
+
state = gr.State(value={})
|
115 |
+
with gr.Row():
|
116 |
+
upl_btn = gr.UploadButton(label="Upload", file_types = ['.csv'], file_count = "single")
|
117 |
+
# with gr.Row('Data Preview'):
|
118 |
+
with gr.Accordion('Data Preview'):
|
119 |
+
df = gr.Dataframe()
|
120 |
+
upl_btn.upload( fn=get_data, inputs = [upl_btn, state], outputs=[df, state])
|
121 |
+
|
122 |
+
with gr.Row():
|
123 |
+
with gr.Tab('Data Explorer'):
|
124 |
+
# outputs.append(gr.Dataframe( label="Event logs"))
|
125 |
+
de_btn = gr.Button("Get Stats")
|
126 |
+
with gr.Row():
|
127 |
+
summary = gr.Dataframe( label="Summary", interactive=False, height=300)
|
128 |
+
chart1 = gr.BarPlot( label="Case Stats")
|
129 |
+
chart2 = gr.BarPlot( label="Case Lead Time Stats")
|
130 |
+
chart3 = gr.BarPlot( label="Case Average Activity Time Stats")
|
131 |
+
de_btn.click( fn=get_stats, inputs = [state], outputs=[ summary, chart1, chart2, chart3, state])
|
132 |
+
with gr.Tab('Variant Explorer'):
|
133 |
+
ve_btn = gr.Button("Get Variants")
|
134 |
+
top_k_variant_selector = gr.Slider(0, 10, value=1, step=1, label="Top-K", info="選擇 Variant 數量(0: 全選)")
|
135 |
+
pmchart = gr.Plot( label="Process Map")
|
136 |
+
ve_btn.click( fn=get_process_map_variants, inputs = [ top_k_variant_selector, state], outputs=[ pmchart, state])
|
137 |
+
|
138 |
+
with gr.Tab('Process Explorer'):
|
139 |
+
pe_btn = gr.Button("Get Activities & Connections")
|
140 |
+
with gr.Column():
|
141 |
+
top_k_activity_selector = gr.Slider(0, 10, value=1, step=1, label="Activity", info="【pending】增減 Top Activity 數量(0: 全選)")
|
142 |
+
top_k_connection_selector = gr.Slider(0, 10, value=1, step=1, label="Connection", info="增減 Top Connection 數量(0: 全選)")
|
143 |
+
pmchart = gr.Plot( label="Process Map")
|
144 |
+
pe_btn.click( fn=get_process_map_activities_connections, inputs = [ top_k_activity_selector, top_k_connection_selector, state], outputs=[ pmchart, state])
|
145 |
+
|
146 |
+
with gr.Tab('Process Model'):
|
147 |
+
cc_btn = gr.Button("Get Process Model")
|
148 |
+
img = gr.Image( label="Process Model")
|
149 |
+
cc_btn.click( fn=get_process_map, inputs = [state], outputs=[ img, state])
|
150 |
+
|
151 |
+
|
152 |
+
if __name__ == "__main__":
|
153 |
+
|
154 |
+
demo.launch(
|
155 |
+
# share=True,
|
156 |
+
server_name="0.0.0.0",
|
157 |
+
server_port=int(os.environ.get("PORT")),
|
158 |
+
auth=( os.environ.get("USER_NAME"), os.environ.get("PASSWORD"))
|
159 |
+
)
|
160 |
+
|
model.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import List, Optional, Tuple, Any
|
3 |
+
from collections import OrderedDict
|
4 |
+
|
5 |
+
import pandas as pd
|
6 |
+
from loguru import logger
|
7 |
+
import pm4py
|
8 |
+
import plotly.graph_objects as go
|
9 |
+
import networkx as nx
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
from PIL import Image
|
12 |
+
from pydantic import BaseModel
|
13 |
+
|
14 |
+
|
15 |
+
class ProcessMap(BaseModel):
|
16 |
+
net: Any
|
17 |
+
start_activities: List | None
|
18 |
+
end_activities: List | None
|
19 |
+
img: Any | None
|
20 |
+
|
21 |
+
|
22 |
+
def dfg2networkx( dfg, start, end):
|
23 |
+
"""Dfg to networkx
|
24 |
+
Argument
|
25 |
+
dfg: a list of dict of edges from directly-follow-graph
|
26 |
+
start: a dict of start activities
|
27 |
+
end: a dict of end activities
|
28 |
+
Return
|
29 |
+
nx: networkx graph object
|
30 |
+
"""
|
31 |
+
PROCESS_START = '#Start#'
|
32 |
+
PROCESS_END = '#End#'
|
33 |
+
nodes = { PROCESS_START: 0, PROCESS_END: 1}
|
34 |
+
node_idx = 2
|
35 |
+
for activity in start:
|
36 |
+
assert activity not in nodes, f"#ERROR: {activity} exists"
|
37 |
+
nodes[activity] = node_idx
|
38 |
+
node_idx += 1
|
39 |
+
for activity in end:
|
40 |
+
assert activity not in nodes, f"#ERROR: {activity} exists"
|
41 |
+
nodes[activity] = node_idx
|
42 |
+
node_idx += 1
|
43 |
+
for node in dfg:
|
44 |
+
left_activity = node[0]
|
45 |
+
if left_activity not in nodes:
|
46 |
+
nodes[left_activity] = node_idx
|
47 |
+
node_idx +=1
|
48 |
+
right_activity = node[1]
|
49 |
+
if right_activity not in nodes:
|
50 |
+
nodes[right_activity] = node_idx
|
51 |
+
node_idx +=1
|
52 |
+
nodes = list(nodes.keys())
|
53 |
+
|
54 |
+
edges = []
|
55 |
+
for activity in start:
|
56 |
+
from_id = str(PROCESS_START)
|
57 |
+
to_id = str(activity)
|
58 |
+
edges.append( ( PROCESS_START, activity) )
|
59 |
+
for activity in end:
|
60 |
+
from_id = str(activity)
|
61 |
+
to_id = str(PROCESS_END)
|
62 |
+
edges.append( ( activity, PROCESS_END) )
|
63 |
+
for transition in dfg:
|
64 |
+
edges.append( ( transition[0], transition[1]) )
|
65 |
+
nx_graph = nx.DiGraph()
|
66 |
+
nx_graph.add_nodes_from( nodes)
|
67 |
+
nx_graph.add_edges_from(edges)
|
68 |
+
return nx_graph
|
69 |
+
|
70 |
+
|
71 |
+
def discover_process_map_variants( df, top_k: int = 0, type: str = 'dfg'):
|
72 |
+
"""Discover process map from data frame (raw event log)
|
73 |
+
Argument
|
74 |
+
df: a pandas dataframe
|
75 |
+
top_k: top k variants
|
76 |
+
type: dfg or petri
|
77 |
+
Return
|
78 |
+
dfg, start_activities, end_activities
|
79 |
+
"""
|
80 |
+
event_log = pm4py.format_dataframe( df, case_id='case_id', activity_key='activity', timestamp_key='timestamp')
|
81 |
+
if top_k > 0:
|
82 |
+
event_log = pm4py.filter_variants_top_k( event_log, k = top_k)
|
83 |
+
dfg, start_activities, end_activities = pm4py.discover_dfg(event_log)
|
84 |
+
pm4py.view_dfg(dfg, start_activities=start_activities, end_activities=end_activities)
|
85 |
+
return dfg, start_activities, end_activities
|
86 |
+
|
87 |
+
|
88 |
+
def discover_process_map_activities_connections( df, activity_rank: int = 0, connection_rank: int = 0, state: dict = {}, type: str = 'dfg'):
|
89 |
+
"""Discover process map from data frame (raw event log)
|
90 |
+
Argument
|
91 |
+
df: a pandas dataframe
|
92 |
+
top_k: top k variants
|
93 |
+
type: dfg or petri
|
94 |
+
Return
|
95 |
+
dfg, start_activities, end_activities
|
96 |
+
"""
|
97 |
+
event_log = pm4py.format_dataframe( df, case_id='case_id', activity_key='activity', timestamp_key='timestamp')
|
98 |
+
full_dfg, _, __ = pm4py.discover_dfg(event_log)
|
99 |
+
ranked_connections = OrderedDict(sorted(full_dfg.items(), key=lambda item: item[1], reverse=True))
|
100 |
+
|
101 |
+
if activity_rank > 0:
|
102 |
+
pass
|
103 |
+
if connection_rank > 0:
|
104 |
+
top_variant_connections = state.get('top_variant_connections', [])
|
105 |
+
filtered_connections = list(ranked_connections.keys())[ : (connection_rank+ len(ranked_connections))]
|
106 |
+
else:
|
107 |
+
filtered_connections = list(ranked_connections.keys())
|
108 |
+
event_log = pm4py.filter_directly_follows_relation( event_log, relations = filtered_connections)
|
109 |
+
dfg, start_activities, end_activities = pm4py.discover_dfg(event_log)
|
110 |
+
pm4py.view_dfg(dfg, start_activities=start_activities, end_activities=end_activities)
|
111 |
+
return dfg, start_activities, end_activities
|
112 |
+
|
113 |
+
|
114 |
+
def discover_process_map( df: pd.DataFrame, type: str = 'dfg'):
|
115 |
+
"""
|
116 |
+
"""
|
117 |
+
event_log = pm4py.format_dataframe( df, case_id='case_id', activity_key='activity', timestamp_key='timestamp')
|
118 |
+
if type=='dfg':
|
119 |
+
dfg, start_activities, end_activities = pm4py.discover_dfg(event_log)
|
120 |
+
pm4py.view_dfg(dfg, start_activities=start_activities, end_activities=end_activities)
|
121 |
+
return dfg, start_activities, end_activities
|
122 |
+
elif type=='petrinet':
|
123 |
+
net, im, fm = pm4py.discover_petri_net_inductive(event_log)
|
124 |
+
pm4py.view_petri_net( petri_net=net, initial_marking=im, final_marking=fm)
|
125 |
+
file_path = 'output/petri_net.png'
|
126 |
+
pm4py.save_vis_petri_net( net, im, fm, file_path)
|
127 |
+
img = Image.open(file_path)
|
128 |
+
return net, img
|
129 |
+
elif type=='bpmn':
|
130 |
+
net = pm4py.discover_bpmn_inductive(event_log)
|
131 |
+
pm4py.view_bpmn(net, format='png')
|
132 |
+
file_path = 'output/bpmn.png'
|
133 |
+
pm4py.save_vis_bpmn( net, file_path)
|
134 |
+
img = Image.open(file_path)
|
135 |
+
return net, img
|
136 |
+
else:
|
137 |
+
raise Exception(f"Invalid type: {type}")
|
138 |
+
|
139 |
+
|
140 |
+
def view_networkx( nx_graph, layout):
|
141 |
+
"""
|
142 |
+
Argument
|
143 |
+
nx_graph
|
144 |
+
Return
|
145 |
+
graph object
|
146 |
+
fig.update_xaxes(showticklabels=False)
|
147 |
+
fig.update_yaxes(showticklabels=False)
|
148 |
+
"""
|
149 |
+
# Create node scatter plot
|
150 |
+
node_trace = go.Scatter(
|
151 |
+
x=[layout[n][0] for n in nx_graph.nodes],
|
152 |
+
y=[layout[n][1] for n in nx_graph.nodes],
|
153 |
+
text=list(nx_graph.nodes),
|
154 |
+
mode='markers+text',
|
155 |
+
hovertext = [n for n in nx_graph.nodes],
|
156 |
+
textposition='top center',
|
157 |
+
marker=dict(size=5, color='LightSkyBlue', line=dict(width=2))
|
158 |
+
)
|
159 |
+
|
160 |
+
# Create edge lines
|
161 |
+
edge_trace = go.Scatter(
|
162 |
+
x=(),
|
163 |
+
y=(),
|
164 |
+
line=dict(width=1.5, color='#888'),
|
165 |
+
hoverinfo='none',
|
166 |
+
mode='lines'
|
167 |
+
)
|
168 |
+
|
169 |
+
# Add arrows for directed edges
|
170 |
+
annotations = []
|
171 |
+
for edge in nx_graph.edges:
|
172 |
+
x0, y0 = layout[edge[0]]
|
173 |
+
x1, y1 = layout[edge[1]]
|
174 |
+
edge_trace['x'] += (x0, x1, None)
|
175 |
+
edge_trace['y'] += (y0, y1, None)
|
176 |
+
|
177 |
+
# Calculate direction of the arrow
|
178 |
+
annotations.append(
|
179 |
+
dict(
|
180 |
+
ax=x0,
|
181 |
+
ay=y0,
|
182 |
+
axref='x',
|
183 |
+
ayref='y',
|
184 |
+
x=x1,
|
185 |
+
y=y1,
|
186 |
+
xref='x',
|
187 |
+
yref='y',
|
188 |
+
showarrow=True,
|
189 |
+
arrowhead=2,
|
190 |
+
arrowsize=1,
|
191 |
+
arrowwidth=2,
|
192 |
+
arrowcolor='Gray'
|
193 |
+
)
|
194 |
+
)
|
195 |
+
|
196 |
+
# Draw the figure
|
197 |
+
fig = go.Figure(data=[edge_trace, node_trace],
|
198 |
+
layout=go.Layout(
|
199 |
+
showlegend=False,
|
200 |
+
hovermode='closest',
|
201 |
+
margin=dict(b=0, l=0, r=0, t=0),
|
202 |
+
annotations=annotations,
|
203 |
+
xaxis=dict(showgrid=False, zeroline=False),
|
204 |
+
yaxis=dict(showgrid=False, zeroline=False)
|
205 |
+
))
|
206 |
+
fig = fig.update_xaxes(showticklabels=False)
|
207 |
+
fig = fig.update_yaxes(showticklabels=False)
|
208 |
+
return fig
|
209 |
+
|
210 |
+
|
211 |
+
def view_process_map( nx_graph, process_type: str = 'dfg', layout_type: str = 'sfdp'):
|
212 |
+
"""
|
213 |
+
"""
|
214 |
+
layout = nx.nx_agraph.graphviz_layout( nx_graph, prog=layout_type)
|
215 |
+
fig = view_networkx(nx_graph, layout)
|
216 |
+
return fig
|
packages.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
graphviz
|
2 |
+
graphviz-dev
|
process_map.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiofiles==23.2.1
|
2 |
+
altair==5.3.0
|
3 |
+
annotated-types==0.7.0
|
4 |
+
anyio==4.4.0
|
5 |
+
argon2-cffi==23.1.0
|
6 |
+
argon2-cffi-bindings==21.2.0
|
7 |
+
arrow==1.3.0
|
8 |
+
asttokens==2.4.1
|
9 |
+
async-lru==2.0.4
|
10 |
+
attrs==23.2.0
|
11 |
+
Babel==2.15.0
|
12 |
+
beautifulsoup4==4.12.3
|
13 |
+
bleach==6.1.0
|
14 |
+
blinker==1.8.2
|
15 |
+
certifi==2024.6.2
|
16 |
+
cffi==1.16.0
|
17 |
+
charset-normalizer==3.3.2
|
18 |
+
click==8.1.7
|
19 |
+
comm==0.2.2
|
20 |
+
contourpy==1.2.1
|
21 |
+
cvxopt==1.3.2
|
22 |
+
cycler==0.12.1
|
23 |
+
dash==2.17.1
|
24 |
+
dash-core-components==2.0.0
|
25 |
+
dash-html-components==2.0.0
|
26 |
+
dash-table==5.0.0
|
27 |
+
debugpy==1.8.1
|
28 |
+
decorator==5.1.1
|
29 |
+
defusedxml==0.7.1
|
30 |
+
deprecation==2.1.0
|
31 |
+
dnspython==2.6.1
|
32 |
+
docopt==0.6.2
|
33 |
+
email_validator==2.1.1
|
34 |
+
exceptiongroup==1.2.1
|
35 |
+
executing==2.0.1
|
36 |
+
extratools==0.8.2.1
|
37 |
+
fastapi==0.111.0
|
38 |
+
fastapi-cli==0.0.4
|
39 |
+
fastjsonschema==2.20.0
|
40 |
+
ffmpy==0.3.2
|
41 |
+
filelock==3.15.1
|
42 |
+
Flask==3.0.3
|
43 |
+
fonttools==4.53.0
|
44 |
+
fqdn==1.5.1
|
45 |
+
fsspec==2024.6.0
|
46 |
+
gradio==4.36.1
|
47 |
+
gradio_client==1.0.1
|
48 |
+
graphviz==0.20.3
|
49 |
+
h11==0.14.0
|
50 |
+
httpcore==1.0.5
|
51 |
+
httptools==0.6.1
|
52 |
+
httpx==0.27.0
|
53 |
+
huggingface-hub==0.23.4
|
54 |
+
idna==3.7
|
55 |
+
importlib_metadata==7.1.0
|
56 |
+
importlib_resources==6.4.0
|
57 |
+
intervaltree==3.1.0
|
58 |
+
ipykernel==6.29.4
|
59 |
+
ipython==8.25.0
|
60 |
+
isoduration==20.11.0
|
61 |
+
itsdangerous==2.2.0
|
62 |
+
jedi==0.19.1
|
63 |
+
Jinja2==3.1.4
|
64 |
+
joblib==1.4.2
|
65 |
+
json5==0.9.25
|
66 |
+
jsonpointer==3.0.0
|
67 |
+
jsonschema==4.22.0
|
68 |
+
jsonschema-specifications==2023.12.1
|
69 |
+
jupyter-events==0.10.0
|
70 |
+
jupyter-lsp==2.2.5
|
71 |
+
jupyter_client==8.6.2
|
72 |
+
jupyter_core==5.7.2
|
73 |
+
jupyter_server==2.14.1
|
74 |
+
jupyter_server_terminals==0.5.3
|
75 |
+
jupyterlab==4.2.2
|
76 |
+
jupyterlab_pygments==0.3.0
|
77 |
+
jupyterlab_server==2.27.2
|
78 |
+
kiwisolver==1.4.5
|
79 |
+
loguru==0.7.2
|
80 |
+
lxml==5.2.2
|
81 |
+
markdown-it-py==3.0.0
|
82 |
+
MarkupSafe==2.1.5
|
83 |
+
matplotlib==3.9.0
|
84 |
+
matplotlib-inline==0.1.7
|
85 |
+
mdurl==0.1.2
|
86 |
+
mistune==3.0.2
|
87 |
+
nbclient==0.10.0
|
88 |
+
nbconvert==7.16.4
|
89 |
+
nbformat==5.10.4
|
90 |
+
nest-asyncio==1.6.0
|
91 |
+
networkx==3.3
|
92 |
+
notebook==7.2.1
|
93 |
+
notebook_shim==0.2.4
|
94 |
+
numpy==1.26.4
|
95 |
+
orjson==3.10.5
|
96 |
+
overrides==7.7.0
|
97 |
+
packaging==24.1
|
98 |
+
pandas==2.2.2
|
99 |
+
pandocfilters==1.5.1
|
100 |
+
parso==0.8.4
|
101 |
+
pexpect==4.9.0
|
102 |
+
pillow==10.3.0
|
103 |
+
platformdirs==4.2.2
|
104 |
+
plotly==5.22.0
|
105 |
+
# pm4py==2.7.11.11
|
106 |
+
-e ./pm4py
|
107 |
+
prefixspan==0.5.2
|
108 |
+
prettytable==3.10.0
|
109 |
+
prometheus_client==0.20.0
|
110 |
+
prompt_toolkit==3.0.47
|
111 |
+
psutil
|
112 |
+
ptyprocess
|
113 |
+
pure-eval==0.2.2
|
114 |
+
pycparser==2.22
|
115 |
+
pydantic==2.7.4
|
116 |
+
pydantic_core==2.18.4
|
117 |
+
pydotplus==2.0.2
|
118 |
+
pydub==0.25.1
|
119 |
+
pyecharts==2.0.6
|
120 |
+
Pygments==2.18.0
|
121 |
+
pygraphviz==1.13
|
122 |
+
pyparsing==3.1.2
|
123 |
+
python-dateutil==2.9.0.post0
|
124 |
+
python-dotenv==1.0.1
|
125 |
+
python-json-logger==2.0.7
|
126 |
+
python-multipart==0.0.9
|
127 |
+
pytz==2024.1
|
128 |
+
PyYAML==6.0.1
|
129 |
+
pyzmq==26.0.3
|
130 |
+
referencing==0.35.1
|
131 |
+
requests==2.32.3
|
132 |
+
retrying==1.3.4
|
133 |
+
rfc3339-validator==0.1.4
|
134 |
+
rfc3986-validator==0.1.1
|
135 |
+
rich==13.7.1
|
136 |
+
rpds-py==0.18.1
|
137 |
+
ruff==0.4.9
|
138 |
+
scikit-learn==1.5.0
|
139 |
+
scipy==1.13.1
|
140 |
+
semantic-version==2.10.0
|
141 |
+
Send2Trash==1.8.3
|
142 |
+
shellingham==1.5.4
|
143 |
+
simplejson==3.19.2
|
144 |
+
six==1.16.0
|
145 |
+
sniffio==1.3.1
|
146 |
+
sortedcontainers==2.4.0
|
147 |
+
soupsieve==2.5
|
148 |
+
stack-data==0.6.3
|
149 |
+
starlette==0.37.2
|
150 |
+
tenacity==8.3.0
|
151 |
+
terminado==0.18.1
|
152 |
+
threadpoolctl==3.5.0
|
153 |
+
tinycss2==1.3.0
|
154 |
+
tomli==2.0.1
|
155 |
+
tomlkit==0.12.0
|
156 |
+
toolz==0.12.1
|
157 |
+
tornado==6.4.1
|
158 |
+
tqdm==4.66.4
|
159 |
+
traitlets==5.14.3
|
160 |
+
typer==0.12.3
|
161 |
+
types-python-dateutil==2.9.0.20240316
|
162 |
+
typing_extensions==4.12.2
|
163 |
+
tzdata==2024.1
|
164 |
+
ujson==5.10.0
|
165 |
+
uri-template==1.3.0
|
166 |
+
urllib3==2.2.1
|
167 |
+
uvicorn==0.30.1
|
168 |
+
uvloop==0.19.0
|
169 |
+
watchfiles==0.22.0
|
170 |
+
wcwidth==0.2.13
|
171 |
+
webcolors==24.6.0
|
172 |
+
webencodings==0.5.1
|
173 |
+
websocket-client==1.8.0
|
174 |
+
websockets==11.0.3
|
175 |
+
Werkzeug==3.0.3
|
176 |
+
zipp==3.19.2
|
sapp.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import importlib
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
def greet(name):
|
7 |
+
parent_name = get_process_name()
|
8 |
+
return f"Hello {name}!! a greeting from {parent_name}"
|
9 |
+
|
10 |
+
def get_process_name():
|
11 |
+
if importlib.util.find_spec("psutil"):
|
12 |
+
import psutil
|
13 |
+
parent_pid = os.getppid()
|
14 |
+
try:
|
15 |
+
parent_name = str(psutil.Process(parent_pid).name())
|
16 |
+
return parent_name
|
17 |
+
except psutil.NoSuchProcess: # Catch the error caused by the process no longer existing
|
18 |
+
print("NoSuchProcess")
|
19 |
+
return "Uknown Process"
|
20 |
+
|
21 |
+
|
22 |
+
if __name__ == "__main__":
|
23 |
+
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
24 |
+
iface.launch()
|