''' This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de). PM4Py is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. PM4Py is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with PM4Py. If not, see . ''' from pm4py.util import exec_utils from enum import Enum from pm4py.algo.conformance.declare.variants import classic from pm4py.objects.log.obj import EventLog import pandas as pd from typing import Union, Dict, Optional, Any, List class Variants(Enum): CLASSIC = classic def apply(log: Union[EventLog, pd.DataFrame], model: Dict[str, Dict[Any, Dict[str, int]]], variant=Variants.CLASSIC, parameters: Optional[Dict[Any, Any]] = None) -> List[Dict[str, Any]]: """ Applies conformance checking against a DECLARE model. Parameters -------------- log Event log / Pandas dataframe model DECLARE model variant Variant to be used: - Variants.CLASSIC parameters Variant-specific parameters Returns ------------- lst_conf_res List containing for every case a dictionary with different keys: - no_constr_total => the total number of constraints of the DECLARE model - deviations => a list of deviations - no_dev_total => the total number of deviations - dev_fitness => the fitness (1 - no_dev_total / no_constr_total) - is_fit => True if the case is perfectly fit """ return exec_utils.get_variant(variant).apply(log, model, parameters) def get_diagnostics_dataframe(log, conf_result, variant=Variants.CLASSIC, parameters=None) -> pd.DataFrame: """ Gets the diagnostics dataframe from a log and the results of DECLARE-based conformance checking Parameters -------------- log Event log conf_result Results of conformance checking variant Variant to be used: - Variants.CLASSIC parameters Variant-specific parameters Returns -------------- diagn_dataframe Diagnostics dataframe """ return exec_utils.get_variant(variant).get_diagnostics_dataframe(log, conf_result, parameters)