''' This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de). PM4Py is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. PM4Py is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with PM4Py. If not, see . ''' from enum import Enum from pm4py.objects.log.obj import EventLog import pandas as pd from typing import Union, Dict, Optional, Any, List from pm4py.algo.discovery.declare.templates import * from pm4py.util import exec_utils, constants, xes_constants, pandas_utils from collections import Counter class Parameters(Enum): CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY def __check_existence(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], trace_dict: Dict[str, List[Any]], parameters: Optional[Dict[Any, Any]] = None): if EXISTENCE in model: for act in model[EXISTENCE]: if act not in trace: trace_dict["deviations"].append([EXISTENCE, act]) def __check_absence(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], trace_dict: Dict[str, List[Any]], parameters: Optional[Dict[Any, Any]] = None): if ABSENCE in model: for act in model[ABSENCE]: if act in trace: trace_dict["deviations"].append([ABSENCE, act]) def __check_exactly_one(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], trace_dict: Dict[str, List[Any]], parameters: Optional[Dict[Any, Any]] = None): if EXACTLY_ONE in model: trace_counter = Counter(trace) for act in model[EXACTLY_ONE]: if trace_counter[act] != 1: trace_dict["deviations"].append([EXACTLY_ONE, act]) def __check_init(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], trace_dict: Dict[str, List[Any]], parameters: Optional[Dict[Any, Any]] = None): if INIT in model: for act in model[INIT]: if len(trace) == 0 or trace[0] != act: trace_dict["deviations"].append([INIT, act]) def __check_responded_existence(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], trace_dict: Dict[str, List[Any]], parameters: Optional[Dict[Any, Any]] = None): if RESPONDED_EXISTENCE in model: for act_couple in model[RESPONDED_EXISTENCE]: if act_couple[0] in trace and act_couple[1] not in trace: trace_dict["deviations"].append([RESPONDED_EXISTENCE, act_couple]) def __check_coexistence(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], trace_dict: Dict[str, List[Any]], parameters: Optional[Dict[Any, Any]] = None): if COEXISTENCE in model: for act_couple in model[COEXISTENCE]: if (act_couple[0] in trace and act_couple[1] not in trace) or ( act_couple[1] in trace and act_couple[0] not in trace): trace_dict["deviations"].append([COEXISTENCE, act_couple]) def __check_non_coexistence(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], trace_dict: Dict[str, List[Any]], parameters: Optional[Dict[Any, Any]] = None): if NONCOEXISTENCE in model: for act_couple in model[NONCOEXISTENCE]: if act_couple[0] in trace and act_couple[1] in trace: trace_dict["deviations"].append([NONCOEXISTENCE, act_couple]) def __check_response(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], trace_dict: Dict[str, List[Any]], act_idxs: Dict[str, List[int]], parameters: Optional[Dict[Any, Any]] = None): if RESPONSE in model: for act_couple in model[RESPONSE]: if act_couple[0] in trace: if (not act_couple[1] in trace) or max(act_idxs[act_couple[0]]) > max(act_idxs[act_couple[1]]): trace_dict["deviations"].append([RESPONSE, act_couple]) def __check_precedence(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], trace_dict: Dict[str, List[Any]], act_idxs: Dict[str, List[int]], parameters: Optional[Dict[Any, Any]] = None): if PRECEDENCE in model: for act_couple in model[PRECEDENCE]: if act_couple[1] in trace: if (not act_couple[0] in trace) or min(act_idxs[act_couple[0]]) > min(act_idxs[act_couple[1]]): trace_dict["deviations"].append([PRECEDENCE, act_couple]) def __check_succession(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], trace_dict: Dict[str, List[Any]], act_idxs: Dict[str, List[int]], parameters: Optional[Dict[Any, Any]] = None): if SUCCESSION in model: for act_couple in model[SUCCESSION]: if (not act_couple[0] in trace or not act_couple[1] in trace) or min(act_idxs[act_couple[0]]) > min( act_idxs[act_couple[1]]) or max(act_idxs[act_couple[0]]) > max(act_idxs[act_couple[1]]): trace_dict["deviations"].append([SUCCESSION, act_couple]) def __check_alt_response(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], trace_dict: Dict[str, List[Any]], act_idxs: Dict[str, List[int]], parameters: Optional[Dict[Any, Any]] = None): if ALTRESPONSE in model: for act_couple in model[RESPONSE]: spec_idxs = [] if act_couple[0] in trace: spec_idxs = spec_idxs + [(act_couple[0], i) for i in act_idxs[act_couple[0]]] if act_couple[1] in trace: spec_idxs = spec_idxs + [(act_couple[1], i) for i in act_idxs[act_couple[1]]] spec_idxs = sorted(spec_idxs, key=lambda x: (x[1], x[0])) while spec_idxs: if spec_idxs[0][0] != act_couple[0]: del spec_idxs[0] else: break is_ok = True for i in range(len(spec_idxs)): if i % 2 == 0 and (spec_idxs[i][0] != act_couple[0] or i == len(spec_idxs) - 1 or spec_idxs[i + 1][0] != act_couple[1]): is_ok = False break if not is_ok: trace_dict["deviations"].append([ALTRESPONSE, act_couple]) def __check_chain_response(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], trace_dict: Dict[str, List[Any]], act_idxs: Dict[str, List[int]], parameters: Optional[Dict[Any, Any]] = None): if CHAINRESPONSE in model: for act_couple in model[CHAINRESPONSE]: spec_idxs = [] if act_couple[0] in trace: spec_idxs = spec_idxs + [(act_couple[0], i) for i in act_idxs[act_couple[0]]] if act_couple[1] in trace: spec_idxs = spec_idxs + [(act_couple[1], i) for i in act_idxs[act_couple[1]]] spec_idxs = sorted(spec_idxs, key=lambda x: (x[1], x[0])) while spec_idxs: if spec_idxs[0][0] != act_couple[0]: del spec_idxs[0] else: break is_ok = True for i in range(len(spec_idxs)): if i % 2 == 0 and (spec_idxs[i][0] != act_couple[0] or i == len(spec_idxs) - 1 or spec_idxs[i + 1][0] != act_couple[1] or spec_idxs[i + 1][1] != spec_idxs[i][1] + 1): is_ok = False break if not is_ok: trace_dict["deviations"].append([CHAINRESPONSE, act_couple]) def __check_alt_precedence(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], trace_dict: Dict[str, List[Any]], act_idxs: Dict[str, List[int]], parameters: Optional[Dict[Any, Any]] = None): if ALTPRECEDENCE in model: for act_couple in model[ALTPRECEDENCE]: spec_idxs = [] if act_couple[0] in trace: spec_idxs = spec_idxs + [(act_couple[0], i) for i in act_idxs[act_couple[0]]] if act_couple[1] in trace: spec_idxs = spec_idxs + [(act_couple[1], i) for i in act_idxs[act_couple[1]]] spec_idxs = sorted(spec_idxs, key=lambda x: (x[1], x[0])) while len(spec_idxs) > 1: if spec_idxs[1][0] != act_couple[1]: del spec_idxs[0] else: break is_ok = True for i in range(len(spec_idxs)): if i % 2 == 0 and (spec_idxs[i][0] != act_couple[0] or i == len(spec_idxs) - 1 or spec_idxs[i + 1][0] != act_couple[1]): is_ok = False break if not is_ok: trace_dict["deviations"].append([ALTPRECEDENCE, act_couple]) def __check_chain_precedence(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], trace_dict: Dict[str, List[Any]], act_idxs: Dict[str, List[int]], parameters: Optional[Dict[Any, Any]] = None): if CHAINPRECEDENCE in model: for act_couple in model[CHAINPRECEDENCE]: spec_idxs = [] if act_couple[0] in trace: spec_idxs = spec_idxs + [(act_couple[0], i) for i in act_idxs[act_couple[0]]] if act_couple[1] in trace: spec_idxs = spec_idxs + [(act_couple[1], i) for i in act_idxs[act_couple[1]]] spec_idxs = sorted(spec_idxs, key=lambda x: (x[1], x[0])) while len(spec_idxs) > 1: if spec_idxs[1][0] != act_couple[1]: del spec_idxs[0] else: break is_ok = True for i in range(len(spec_idxs)): if i % 2 == 0 and (spec_idxs[i][0] != act_couple[0] or i == len(spec_idxs) - 1 or spec_idxs[i + 1][0] != act_couple[1] or spec_idxs[i + 1][1] != spec_idxs[i][1] + 1): is_ok = False break if not is_ok: trace_dict["deviations"].append([CHAINPRECEDENCE, act_couple]) def __check_alt_succession(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], trace_dict: Dict[str, List[Any]], act_idxs: Dict[str, List[int]], parameters: Optional[Dict[Any, Any]] = None): if ALTSUCCESSION in model: for act_couple in model[ALTSUCCESSION]: spec_idxs = [] if act_couple[0] in trace: spec_idxs = spec_idxs + [(act_couple[0], i) for i in act_idxs[act_couple[0]]] if act_couple[1] in trace: spec_idxs = spec_idxs + [(act_couple[1], i) for i in act_idxs[act_couple[1]]] spec_idxs = sorted(spec_idxs, key=lambda x: (x[1], x[0])) is_ok = True for i in range(len(spec_idxs)): if i % 2 == 0 and (spec_idxs[i][0] != act_couple[0] or i == len(spec_idxs) - 1 or spec_idxs[i + 1][0] != act_couple[1]): is_ok = False break if not is_ok: trace_dict["deviations"].append([ALTSUCCESSION, act_couple]) def __check_chain_succession(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], trace_dict: Dict[str, List[Any]], act_idxs: Dict[str, List[int]], parameters: Optional[Dict[Any, Any]] = None): if CHAINSUCCESSION in model: for act_couple in model[CHAINSUCCESSION]: spec_idxs = [] if act_couple[0] in trace: spec_idxs = spec_idxs + [(act_couple[0], i) for i in act_idxs[act_couple[0]]] if act_couple[1] in trace: spec_idxs = spec_idxs + [(act_couple[1], i) for i in act_idxs[act_couple[1]]] spec_idxs = sorted(spec_idxs, key=lambda x: (x[1], x[0])) is_ok = True for i in range(len(spec_idxs)): if i % 2 == 0 and (spec_idxs[i][0] != act_couple[0] or i == len(spec_idxs) - 1 or spec_idxs[i + 1][0] != act_couple[1] or spec_idxs[i + 1][1] != spec_idxs[i][1] + 1): is_ok = False break if not is_ok: trace_dict["deviations"].append([CHAINSUCCESSION, act_couple]) def apply_list(projected_log: List[List[str]], model: Dict[str, Dict[Any, Dict[str, int]]], parameters: Optional[Dict[Any, Any]] = None) -> List[Dict[str, Any]]: if parameters is None: parameters = {} conf_cases = [] total_num_constraints = 0 for k in model: total_num_constraints += len(model[k]) for trace in projected_log: act_idxs = {} for i in range(len(trace)): if trace[i] not in act_idxs: act_idxs[trace[i]] = [] act_idxs[trace[i]].append(i) ret = {} ret["no_constr_total"] = total_num_constraints ret["deviations"] = [] __check_existence(trace, model, ret, parameters) __check_exactly_one(trace, model, ret, parameters) __check_init(trace, model, ret, parameters) __check_responded_existence(trace, model, ret, parameters) __check_coexistence(trace, model, ret, parameters) __check_non_coexistence(trace, model, ret, parameters) __check_response(trace, model, ret, act_idxs, parameters) __check_precedence(trace, model, ret, act_idxs, parameters) __check_succession(trace, model, ret, act_idxs, parameters) __check_alt_response(trace, model, ret, act_idxs, parameters) __check_chain_response(trace, model, ret, act_idxs, parameters) __check_alt_precedence(trace, model, ret, act_idxs, parameters) __check_chain_precedence(trace, model, ret, act_idxs, parameters) __check_alt_succession(trace, model, ret, act_idxs, parameters) __check_chain_succession(trace, model, ret, act_idxs, parameters) __check_absence(trace, model, ret, parameters) __check_non_coexistence(trace, model, ret, parameters) ret["no_dev_total"] = len(ret["deviations"]) ret["dev_fitness"] = 1.0 - ret["no_dev_total"] / ret["no_constr_total"] if ret["no_constr_total"] > 0 else 1.0 ret["is_fit"] = ret["no_dev_total"] == 0 conf_cases.append(ret) return conf_cases def apply(log: Union[EventLog, pd.DataFrame], model: Dict[str, Dict[Any, Dict[str, int]]], parameters: Optional[Dict[Any, Any]] = None) -> List[Dict[str, Any]]: """ Applies conformance checking against a DECLARE model. Paper: F. M. Maggi, A. J. Mooij and W. M. P. van der Aalst, "User-guided discovery of declarative process models," 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), Paris, France, 2011, pp. 192-199, doi: 10.1109/CIDM.2011.5949297. Parameters -------------- log Event log / Pandas dataframe model DECLARE model parameters Possible parameters of the algorithm, including: - Parameters.ACTIVITY_KEY => the attribute to be used as activity - Parameters.CASE_ID_KEY => the attribute to be used as case identifier Returns ------------- lst_conf_res List containing for every case a dictionary with different keys: - no_constr_total => the total number of constraints of the DECLARE model - deviations => a list of deviations - no_dev_total => the total number of deviations - dev_fitness => the fitness (1 - no_dev_total / no_constr_total) - is_fit => True if the case is perfectly fit """ if parameters is None: parameters = {} activity_key = exec_utils.get_param_value(Parameters.ACTIVITY_KEY, parameters, xes_constants.DEFAULT_NAME_KEY) case_id_key = exec_utils.get_param_value(Parameters.CASE_ID_KEY, parameters, constants.CASE_CONCEPT_NAME) import pm4py projected_log = pm4py.project_on_event_attribute(log, activity_key, case_id_key=case_id_key) ret = apply_list(projected_log, model, parameters=parameters) return ret def get_diagnostics_dataframe(log, conf_result, parameters=None) -> pd.DataFrame: """ Gets the diagnostics dataframe from a log and the results of DECLARE-based conformance checking Parameters -------------- log Event log conf_result Results of conformance checking Returns -------------- diagn_dataframe Diagnostics dataframe """ if parameters is None: parameters = {} case_id_key = exec_utils.get_param_value(Parameters.CASE_ID_KEY, parameters, xes_constants.DEFAULT_TRACEID_KEY) import pandas as pd diagn_stream = [] for index in range(len(log)): case_id = log[index].attributes[case_id_key] no_dev_total = conf_result[index]["no_dev_total"] no_constr_total = conf_result[index]["no_constr_total"] dev_fitness = conf_result[index]["dev_fitness"] diagn_stream.append({"case_id": case_id, "no_dev_total": no_dev_total, "no_constr_total": no_constr_total, "dev_fitness": dev_fitness}) return pandas_utils.instantiate_dataframe(diagn_stream)