''' This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de). PM4Py is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. PM4Py is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with PM4Py. If not, see . ''' from pm4py.algo.conformance.log_skeleton.variants import classic from enum import Enum from pm4py.util import exec_utils from typing import Optional, Dict, Any, Union, List, Set from pm4py.objects.log.obj import EventLog, Trace import pandas as pd class Variants(Enum): CLASSIC = classic CLASSIC = Variants.CLASSIC DEFAULT_VARIANT = Variants.CLASSIC def apply(obj: Union[EventLog, Trace, pd.DataFrame], model: Dict[str, Any], variant=DEFAULT_VARIANT, parameters: Optional[Dict[Any, Any]] = None) -> List[Set[Any]]: """ Apply log-skeleton based conformance checking given an event log/trace and a log-skeleton model Parameters -------------- obj Object (event log/trace) model Log-skeleton model variant Variant of the algorithm, possible values: Variants.CLASSIC parameters Parameters of the algorithm, including: - Parameters.ACTIVITY_KEY - Parameters.CONSIDERED_CONSTRAINTS, among: equivalence, always_after, always_before, never_together, directly_follows, activ_freq Returns -------------- aligned_traces Conformance checking results for each trace: - Outputs.IS_FIT => boolean that tells if the trace is perfectly fit according to the model - Outputs.DEV_FITNESS => deviation based fitness (between 0 and 1; the more the trace is near to 1 the more fit is) - Outputs.DEVIATIONS => list of deviations in the model """ if parameters is None: parameters = {} if type(obj) is Trace: return exec_utils.get_variant(variant).apply_trace(obj, model, parameters=parameters) else: return exec_utils.get_variant(variant).apply_log(obj, model, parameters=parameters) def apply_from_variants_list(var_list: List[List[str]], model: Dict[str, Any], variant=DEFAULT_VARIANT, parameters: Optional[Dict[Any, Any]] = None) -> List[Set[Any]]: """ Performs conformance checking using the log skeleton, applying it from a list of variants Parameters -------------- var_list List of variants model Log skeleton model variant Variant of the algorithm, possible values: Variants.CLASSIC parameters Parameters Returns -------------- conformance_dictio Dictionary containing, for each variant, the result of log skeleton checking """ if parameters is None: parameters = {} return exec_utils.get_variant(variant).apply_from_variants_list(var_list, model, parameters=parameters) def get_diagnostics_dataframe(log: EventLog, conf_result: List[Set[Any]], variant=DEFAULT_VARIANT, parameters: Optional[Dict[Any, Any]] = None) -> pd.DataFrame: """ Gets the diagnostics dataframe from a log and the results of log skeleton-based conformance checking Parameters -------------- log Event log conf_result Results of conformance checking Returns -------------- diagn_dataframe Diagnostics dataframe """ if parameters is None: parameters = {} return exec_utils.get_variant(variant).get_diagnostics_dataframe(log, conf_result, parameters=parameters)