''' This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de). PM4Py is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. PM4Py is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with PM4Py. If not, see . ''' from typing import Optional, Dict, Any from enum import Enum from pm4py.util import exec_utils, pandas_utils import pandas as pd class Parameters(Enum): CONNECTION_STRING = "connection_string" def apply(conn, parameters: Optional[Dict[Any, Any]] = None) -> pd.DataFrame: """ Extracts an event log from the Camunda workflow system Parameters --------------- conn (if provided) ODBC connection object to the database (offering cursors) parameters Parameters of the algorithm, including: - Parameters.CONNECTION_STRING => connection string that is used (if no connection is provided) Returns --------------- dataframe Pandas dataframe """ if parameters is None: parameters = {} import pm4py connection_string = exec_utils.get_param_value(Parameters.CONNECTION_STRING, parameters, None) if conn is None: import pyodbc conn = pyodbc.connect(connection_string) curs = conn.cursor() query = """ SELECT pi.PROC_DEF_KEY_ AS "processID", ai.EXECUTION_ID_ AS "case:concept:name", ai.ACT_NAME_ AS "concept:name", ai.START_TIME_ AS "time:timestamp", ai.ASSIGNEE_ AS "org:resource" FROM act_hi_procinst pi JOIN act_hi_actinst ai ON pi.PROC_INST_ID_ = ai.PROC_INST_ID_ ORDER BY pi.PROC_INST_ID_, ai.EXECUTION_ID_, ai.START_TIME_; """ columns = ["processID", "case:concept:name", "concept:name", "time:timestamp", "org:resource"] curs.execute(query) dataframe = curs.fetchall() dataframe = pandas_utils.instantiate_dataframe_from_records(dataframe, columns=columns) dataframe = pm4py.format_dataframe(dataframe) curs.close() conn.close() return dataframe