''' This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de). PM4Py is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. PM4Py is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with PM4Py. If not, see . ''' from enum import Enum from pm4py.util import constants from pm4py.util import exec_utils, pandas_utils from pm4py.util import xes_constants as xes from pm4py.util.constants import CASE_CONCEPT_NAME from typing import Optional, Dict, Any, Union, List import pandas as pd class Parameters(Enum): ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_TIMESTAMP_KEY CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY ATTRIBUTE_KEY = constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY PARAMETER_SAMPLE_SIZE = "sample_size" SORT_LOG_REQUIRED = "sort_log_required" def apply(dataframe: pd.DataFrame, list_activities: List[str], sample_size: int, parameters: Optional[Dict[Union[str, Parameters], Any]] = None) -> Dict[str, Any]: """ Finds the performance spectrum provided a dataframe and a list of activities Parameters ------------- dataframe Dataframe list_activities List of activities interesting for the performance spectrum (at least two) sample_size Size of the sample parameters Parameters of the algorithm, including: - Parameters.ACTIVITY_KEY - Parameters.TIMESTAMP_KEY - Parameters.CASE_ID_KEY Returns ------------- points Points of the performance spectrum """ if parameters is None: parameters = {} import pandas as pd import numpy as np case_id_glue = exec_utils.get_param_value(Parameters.CASE_ID_KEY, parameters, CASE_CONCEPT_NAME) activity_key = exec_utils.get_param_value(Parameters.ACTIVITY_KEY, parameters, xes.DEFAULT_NAME_KEY) timestamp_key = exec_utils.get_param_value(Parameters.TIMESTAMP_KEY, parameters, xes.DEFAULT_TIMESTAMP_KEY) sort_log_required = exec_utils.get_param_value(Parameters.SORT_LOG_REQUIRED, parameters, True) dataframe = dataframe[[case_id_glue, activity_key, timestamp_key]] dataframe[activity_key] = dataframe[activity_key].astype("string") dataframe = dataframe[dataframe[activity_key].isin(list_activities)] dataframe = pandas_utils.insert_index(dataframe, constants.DEFAULT_EVENT_INDEX_KEY) if sort_log_required: dataframe = dataframe.sort_values([case_id_glue, timestamp_key, constants.DEFAULT_EVENT_INDEX_KEY]) dataframe[timestamp_key] = dataframe[timestamp_key].astype(np.int64) / 10 ** 9 def key(k, n): return k + str(n) # create a dataframe with all needed columns to check for the activities pattern dfs = [dataframe.add_suffix(str(i)).shift(-i) for i in range(len(list_activities))] dataframe = pandas_utils.concat(dfs, axis=1) # keep only rows that belong to exactly one case for i in range(len(list_activities) - 1): dataframe = dataframe[dataframe[key(case_id_glue, i)] == dataframe[key(case_id_glue, i + 1)]] column_list = [key(activity_key, i) for i in range(len(list_activities))] pattern = "".join(list_activities) # keep only rows that have the desired activities pattern matches = dataframe[np.equal(dataframe[column_list].agg(''.join, axis=1), pattern)] if len(matches) > sample_size: matches = matches.sample(n=sample_size) filt_col_names = [timestamp_key + str(i) for i in range(len(list_activities))] points = pandas_utils.to_dict_records(matches) points = [[p[tk] for tk in filt_col_names] for p in points] points = sorted(points, key=lambda x: x[0]) return points