''' This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de). PM4Py is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. PM4Py is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with PM4Py. If not, see . ''' from pm4py.objects.log.util import sorting from pm4py.objects.log.util import basic_filter from pm4py.util import points_subset from pm4py.util import xes_constants as xes from pm4py.util import exec_utils from enum import Enum from pm4py.util import constants from typing import Optional, Dict, Any, Union, List from pm4py.objects.log.obj import EventLog class Parameters(Enum): ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_TIMESTAMP_KEY CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY ATTRIBUTE_KEY = constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY PARAMETER_SAMPLE_SIZE = "sample_size" SORT_LOG_REQUIRED = "sort_log_required" def apply(log: EventLog, list_activities: List[str], sample_size: int, parameters: Optional[Dict[Union[str, Parameters], Any]] = None) -> Dict[str, Any]: """ Finds the performance spectrum provided a log and a list of activities Parameters ------------- log Log list_activities List of activities interesting for the performance spectrum (at least two) sample_size Size of the sample parameters Parameters of the algorithm, including: - Parameters.ACTIVITY_KEY - Parameters.TIMESTAMP_KEY Returns ------------- points Points of the performance spectrum """ if parameters is None: parameters = {} activity_key = exec_utils.get_param_value(Parameters.ACTIVITY_KEY, parameters, xes.DEFAULT_NAME_KEY) timestamp_key = exec_utils.get_param_value(Parameters.TIMESTAMP_KEY, parameters, xes.DEFAULT_TIMESTAMP_KEY) sort_log_required = exec_utils.get_param_value(Parameters.SORT_LOG_REQUIRED, parameters, True) parameters[Parameters.ATTRIBUTE_KEY] = activity_key log = basic_filter.filter_log_events_attr(log, list_activities, parameters=parameters) if sort_log_required: log = sorting.sort_timestamp_log(log, timestamp_key=timestamp_key) points = [] for trace in log: for i in range(len(trace)-len(list_activities)+1): acti_comb = [event[activity_key] for event in trace[i:i+len(list_activities)]] if acti_comb == list_activities: timest_comb = [event[timestamp_key].timestamp() for event in trace[i:i+len(list_activities)]] points.append(timest_comb) points = sorted(points, key=lambda x: x[0]) if len(points) > sample_size: points = points_subset.pick_chosen_points_list(sample_size, points) return points