''' This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de). PM4Py is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. PM4Py is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with PM4Py. If not, see . ''' from pm4py.algo.conformance.tokenreplay.variants import token_replay from pm4py.algo.conformance.tokenreplay import algorithm as executor from pm4py.objects import log as log_lib from pm4py.algo.evaluation.precision import utils as precision_utils from pm4py.statistics.start_activities.log.get import get_start_activities from pm4py.objects.petri_net.utils.align_utils import get_visible_transitions_eventually_enabled_by_marking from pm4py.util import exec_utils from enum import Enum from pm4py.util import constants from typing import Optional, Dict, Any, Union from pm4py.objects.log.obj import EventLog from pm4py.objects.petri_net.obj import PetriNet, Marking from pm4py.objects.conversion.log import converter as log_converter import pandas as pd class Parameters(Enum): ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY TOKEN_REPLAY_VARIANT = "token_replay_variant" CLEANING_TOKEN_FLOOD = "cleaning_token_flood" SHOW_PROGRESS_BAR = "show_progress_bar" MULTIPROCESSING = "multiprocessing" CORES = "cores" """ Implementation of the approach described in paper Muñoz-Gama, Jorge, and Josep Carmona. "A fresh look at precision in process conformance." International Conference on Business Process Management. Springer, Berlin, Heidelberg, 2010. for measuring precision. For each prefix in the log, the reflected tasks are calculated (outgoing attributes from the prefix) Then, a token replay is done on the prefix in order to get activated transitions Escaping edges is the set difference between activated transitions and reflected tasks Then, precision is calculated by the formula used in the paper At the moment, the precision value is different from the one provided by the ProM plug-in, although the implementation seems to follow the paper concept """ def apply(log: EventLog, net: PetriNet, marking: Marking, final_marking: Marking, parameters: Optional[Dict[Union[str, Parameters], Any]] = None): """ Get ET Conformance precision Parameters ---------- log Trace log net Petri net marking Initial marking final_marking Final marking parameters Parameters of the algorithm, including: Parameters.ACTIVITY_KEY -> Activity key """ if parameters is None: parameters = {} cleaning_token_flood = exec_utils.get_param_value(Parameters.CLEANING_TOKEN_FLOOD, parameters, False) token_replay_variant = exec_utils.get_param_value(Parameters.TOKEN_REPLAY_VARIANT, parameters, executor.Variants.TOKEN_REPLAY) activity_key = exec_utils.get_param_value(Parameters.ACTIVITY_KEY, parameters, log_lib.util.xes.DEFAULT_NAME_KEY) case_id_key = exec_utils.get_param_value(Parameters.CASE_ID_KEY, parameters, constants.CASE_CONCEPT_NAME) show_progress_bar = exec_utils.get_param_value(Parameters.SHOW_PROGRESS_BAR, parameters, constants.SHOW_PROGRESS_BAR) # default value for precision, when no activated transitions (not even by looking at the initial marking) are found precision = 1.0 sum_ee = 0 sum_at = 0 parameters_tr = { token_replay.Parameters.SHOW_PROGRESS_BAR: show_progress_bar, token_replay.Parameters.CONSIDER_REMAINING_IN_FITNESS: False, token_replay.Parameters.TRY_TO_REACH_FINAL_MARKING_THROUGH_HIDDEN: False, token_replay.Parameters.STOP_IMMEDIATELY_UNFIT: True, token_replay.Parameters.WALK_THROUGH_HIDDEN_TRANS: True, token_replay.Parameters.CLEANING_TOKEN_FLOOD: cleaning_token_flood, token_replay.Parameters.ACTIVITY_KEY: activity_key } if type(log) is not pd.DataFrame: log = log_converter.apply(log, variant=log_converter.Variants.TO_EVENT_LOG, parameters=parameters) prefixes, prefix_count = precision_utils.get_log_prefixes(log, activity_key=activity_key, case_id_key=case_id_key) prefixes_keys = list(prefixes.keys()) fake_log = precision_utils.form_fake_log(prefixes_keys, activity_key=activity_key) aligned_traces = executor.apply(fake_log, net, marking, final_marking, variant=token_replay_variant, parameters=parameters_tr) # fix: also the empty prefix should be counted! start_activities = set(get_start_activities(log, parameters=parameters)) trans_en_ini_marking = set([x.label for x in get_visible_transitions_eventually_enabled_by_marking(net, marking)]) diff = trans_en_ini_marking.difference(start_activities) sum_at += len(log) * len(trans_en_ini_marking) sum_ee += len(log) * len(diff) # end fix for i in range(len(aligned_traces)): if aligned_traces[i]["trace_is_fit"]: log_transitions = set(prefixes[prefixes_keys[i]]) activated_transitions_labels = set( [x.label for x in aligned_traces[i]["enabled_transitions_in_marking"] if x.label is not None]) sum_at += len(activated_transitions_labels) * prefix_count[prefixes_keys[i]] escaping_edges = activated_transitions_labels.difference(log_transitions) sum_ee += len(escaping_edges) * prefix_count[prefixes_keys[i]] if sum_at > 0: precision = 1 - float(sum_ee) / float(sum_at) return precision